{"title":"Br(e)权衡番茄果实的大小和甜度。","authors":"Alisdair R Fernie, Felix Martinez-Rivas","doi":"10.1016/j.tplants.2024.12.015","DOIUrl":null,"url":null,"abstract":"<p><p>The study by Zhang et al. demonstrated that two kinases (SlCDPK27 and SlCDPK26) regulate the sugar content in tomato fruits with little impact on morphology. They act as sugar breaks by phosphorylating a sucrose synthase, promoting its degradation and unveiling the mechanism by which sugar content can be increased without yield penalty.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Br(e)aking the tomato fruit size-sweetness trade-off.\",\"authors\":\"Alisdair R Fernie, Felix Martinez-Rivas\",\"doi\":\"10.1016/j.tplants.2024.12.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The study by Zhang et al. demonstrated that two kinases (SlCDPK27 and SlCDPK26) regulate the sugar content in tomato fruits with little impact on morphology. They act as sugar breaks by phosphorylating a sucrose synthase, promoting its degradation and unveiling the mechanism by which sugar content can be increased without yield penalty.</p>\",\"PeriodicalId\":23264,\"journal\":{\"name\":\"Trends in Plant Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tplants.2024.12.015\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tplants.2024.12.015","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Br(e)aking the tomato fruit size-sweetness trade-off.
The study by Zhang et al. demonstrated that two kinases (SlCDPK27 and SlCDPK26) regulate the sugar content in tomato fruits with little impact on morphology. They act as sugar breaks by phosphorylating a sucrose synthase, promoting its degradation and unveiling the mechanism by which sugar content can be increased without yield penalty.
期刊介绍:
Trends in Plant Science is the primary monthly review journal in plant science, encompassing a wide range from molecular biology to ecology. It offers concise and accessible reviews and opinions on fundamental plant science topics, providing quick insights into current thinking and developments in plant biology. Geared towards researchers, students, and teachers, the articles are authoritative, authored by both established leaders in the field and emerging talents.