Translational Neuroscience最新文献

筛选
英文 中文
Effect of dopamine on limbic network connectivity at rest in Parkinson's disease patients with freezing of gait. 多巴胺对伴有步态冻结的帕金森病患者静息状态下边缘网络连接的影响
IF 2.1 4区 医学
Translational Neuroscience Pub Date : 2024-05-02 eCollection Date: 2024-01-01 DOI: 10.1515/tnsci-2022-0336
Dione Y L Quek, Natasha Taylor, Moran Gilat, Simon J G Lewis, Kaylena A Ehgoetz Martens
{"title":"Effect of dopamine on limbic network connectivity at rest in Parkinson's disease patients with freezing of gait.","authors":"Dione Y L Quek, Natasha Taylor, Moran Gilat, Simon J G Lewis, Kaylena A Ehgoetz Martens","doi":"10.1515/tnsci-2022-0336","DOIUrl":"https://doi.org/10.1515/tnsci-2022-0336","url":null,"abstract":"<p><strong>Background: </strong>Freezing of gait (FOG) in Parkinson's disease (PD) has a poorly understood pathophysiology, which hinders treatment development. Recent work showed a dysfunctional fronto-striato-limbic circuitry at rest in PD freezers compared to non-freezers in the dopamine \"OFF\" state. While other studies found that dopaminergic replacement therapy alters functional brain organization in PD, the specific effect of dopamine medication on fronto-striato-limbic functional connectivity in freezers remains unclear.</p><p><strong>Objective: </strong>To evaluate how dopamine therapy alters resting state functional connectivity (rsFC) of the fronto-striato-limbic circuitry in PD freezers, and whether the degree of connectivity change is related to freezing severity and anxiety.</p><p><strong>Methods: </strong>Twenty-three PD FOG patients underwent MRI at rest (rsfMRI) in their clinically defined \"OFF\" and \"ON\" dopaminergic medication states. A seed-to-seed based analysis was performed between a priori defined limbic circuitry ROIs. Functional connectivity was compared between OFF and ON states. A secondary correlation analyses evaluated the relationship between Hospital Anxiety and Depression Scale (HADS)-Anxiety) and FOG Questionnaire with changes in rsFC from OFF to ON.</p><p><strong>Results: </strong>PD freezers' OFF compared to ON showed increased functional coupling between the right hippocampus and right caudate nucleus, and between the left putamen and left posterior parietal cortex (PPC). A negative association was found between HADS-Anxiety and the rsFC change from OFF to ON between the left amygdala and left prefrontal cortex, and left putamen and left PPC.</p><p><strong>Conclusion: </strong>These findings suggest that dopaminergic medication partially modulates the frontoparietal-limbic-striatal circuitry in PD freezers, and that the influence of medication on the amygdala, may be related to clinical anxiety in freezer.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11066616/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140852862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single cocaine exposure attenuates the intrinsic excitability of CRH neurons in the ventral BNST via Sigma-1 receptors. 单次可卡因暴露可通过 Sigma-1 受体减弱腹侧 BNST CRH 神经元的内在兴奋性。
IF 2.1 4区 医学
Translational Neuroscience Pub Date : 2024-04-24 eCollection Date: 2024-01-01 DOI: 10.1515/tnsci-2022-0339
Jintao Wu, Yue Zhao
{"title":"Single cocaine exposure attenuates the intrinsic excitability of CRH neurons in the ventral BNST via Sigma-1 receptors.","authors":"Jintao Wu, Yue Zhao","doi":"10.1515/tnsci-2022-0339","DOIUrl":"https://doi.org/10.1515/tnsci-2022-0339","url":null,"abstract":"<p><p>The ventral bed nucleus of the stria terminalis (vBNST) plays a key role in cocaine addiction, especially relapse. However, the direct effects of cocaine on corticotropin-releasing hormone (CRH) neurons in the vBNST remain unclear. Here, we identify that cocaine exposure can remarkably attenuate the intrinsic excitability of CRH neurons in the vBNST <i>in vitro</i>. Accumulating studies reveal the crucial role of Sigma-1 receptors (Sig-1Rs) in modulating cocaine addiction. However, to the authors' best knowledge no investigations have explored the role of Sig-1Rs in the vBNST, let alone CRH neurons. Given that cocaine acts as a type of Sig-1Rs agonist, and the dramatic role of Sig-1Rs played in intrinsic excitability of neurons as well as cocaine addiction, we employ BD1063 a canonical Sig-1Rs antagonist to block the effects of cocaine, and significantly recover the excitability of CRH neurons. Together, we suggest that cocaine exposure leads to the firing rate depression of CRH neurons in the vBNST via binding to Sig-1Rs.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11047800/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140855274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The ACE2/Ang-(1-7)/MasR axis alleviates brain injury after cardiopulmonary resuscitation in rabbits by activating PI3K/Akt signaling. ACE2/Ang-(1-7)/MasR轴通过激活PI3K/Akt信号转导减轻兔子心肺复苏后的脑损伤。
IF 1.8 4区 医学
Translational Neuroscience Pub Date : 2024-04-11 eCollection Date: 2024-01-01 DOI: 10.1515/tnsci-2022-0334
Jing Cheng, Hong Yang, Fang Chen, Li Qiu, Fang Chen, Yanhua Du, Xiangping Meng
{"title":"The ACE2/Ang-(1-7)/MasR axis alleviates brain injury after cardiopulmonary resuscitation in rabbits by activating PI3K/Akt signaling.","authors":"Jing Cheng, Hong Yang, Fang Chen, Li Qiu, Fang Chen, Yanhua Du, Xiangping Meng","doi":"10.1515/tnsci-2022-0334","DOIUrl":"10.1515/tnsci-2022-0334","url":null,"abstract":"<p><strong>Background: </strong>Death among resuscitated patients is mainly caused by brain injury after cardiac arrest/cardiopulmonary resuscitation (CA/CPR). The angiotensin converting enzyme 2 (ACE2)/angiotensin (Ang)-(1-7)/Mas receptor (MasR) axis has beneficial effects on brain injury. Therefore, we examined the roles of the ACE2/Ang-(1-7)/MasR axis in brain injury after CA/CPR.</p><p><strong>Method: </strong>We used a total of 76 male New Zealand rabbits, among which 10 rabbits underwent sham operation and 66 rabbits received CA/CPR. Neurological functions were determined by assessing serum levels of neuron-specific enolase and S100 calcium-binding protein B and neurological deficit scores. Brain water content was estimated. Neuronal apoptosis in the hippocampus was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling assays. The expression levels of various genes were measured by enzyme-linked immunosorbent assay and western blotting.</p><p><strong>Results: </strong>Ang-(1-7) (MasR activator) alleviated CA/CPR-induced neurological deficits, brain edema, and neuronal damage, and A779 (MasR antagonist) had the opposite functions. The stimulation of ACE2/Ang-(1-7)/MasR inactivated the ACE/Ang II/AT1R axis and activated PI3K/Akt signaling. Inhibiting PI3K/Akt signaling inhibited Ang-(1-7)-mediated protection against brain damage after CA/CPR.</p><p><strong>Conclusion: </strong>Collectively, the ACE2/Ang-(1-7)/MasR axis alleviates CA/CPR-induced brain injury through attenuating hippocampal neuronal apoptosis by activating PI3K/Akt signaling.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017183/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140865722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trehalose improves the movement ability of AβarcDrosophila by restoring the damaged mitochondria. 通过恢复受损的线粒体,树胶糖提高了 AβarcDrosophila 的运动能力。
IF 2.1 4区 医学
Translational Neuroscience Pub Date : 2024-04-10 eCollection Date: 2024-01-01 DOI: 10.1515/tnsci-2022-0338
Liangxian Li, Zhiheng Huang, Mingli Wu, Xia Li, Bo Xiao, Dong Yao, Biwen Mo
{"title":"Trehalose improves the movement ability of Aβ<sub>arc</sub><i>Drosophila</i> by restoring the damaged mitochondria.","authors":"Liangxian Li, Zhiheng Huang, Mingli Wu, Xia Li, Bo Xiao, Dong Yao, Biwen Mo","doi":"10.1515/tnsci-2022-0338","DOIUrl":"https://doi.org/10.1515/tnsci-2022-0338","url":null,"abstract":"<p><strong>Background: </strong>The deposition of Aβ<sub>42</sub> has been regarded as one of the important pathological features of Alzheimer's disease (AD). However, drug development for Aβ<sub>42</sub> toxicity has been progressed slowly.</p><p><strong>Objective: </strong>Our aim was to introduce the effect and related mechanism of trehalose on an Aβ<sub>arc</sub> (arctic mutant Aβ<sub>42</sub>) <i>Drosophila</i> AD model.</p><p><strong>Methods: </strong>The human Aβ<sub>arc</sub> was expressed in <i>Drosophila</i> to construct the AD model. Trehalose was added to the culture vial. The movement ability was determined by detecting climbing ability and flight ability. Enzyme-linked immunosorbent assay was used to detect the levels of Aβ<sub>arc</sub>, ATP, and lactate. Electron microscopy assay, mitochondrial membrane potential assay, and mitochondrial respiration assay were used to assess the mitochondrial structure and function.</p><p><strong>Results: </strong>Trehalose strongly improved the movement ability of Aβ<sub>arc</sub> <i>Drosophila</i> in a concentration gradient-dependent manner. Furthermore, trehalose increased the content of ATP and decreased the content of Aβ<sub>arc</sub> and lactate both in the brain and thorax of Aβ<sub>arc</sub> <i>Drosophila</i>. More importantly, the mitochondrial structure and function were greatly improved by trehalose treatment in Aβ<sub>arc</sub> <i>Drosophila</i>.</p><p><strong>Conclusion: </strong>Trehalose improves movement ability at least partly by reducing the Aβ<sub>arc</sub> level and restoring the mitochondrial structure and function in Aβ<sub>arc</sub> <i>Drosophila</i>.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017185/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140868193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Association between FOXP3 polymorphisms and expression and neuromyelitis optica spectrum disorder risk in the Northern Chinese Han population. 中国北方汉族人群中 FOXP3 多态性和表达与神经脊髓炎视谱系障碍风险之间的关系
IF 2.1 4区 医学
Translational Neuroscience Pub Date : 2024-04-05 eCollection Date: 2024-01-01 DOI: 10.1515/tnsci-2022-0337
Jing Liu, Gaoning Wang, Jiahe Yang, Yulin Wang, Ruoyi Guo, Bin Li
{"title":"Association between <i>FOXP3</i> polymorphisms and expression and neuromyelitis optica spectrum disorder risk in the Northern Chinese Han population.","authors":"Jing Liu, Gaoning Wang, Jiahe Yang, Yulin Wang, Ruoyi Guo, Bin Li","doi":"10.1515/tnsci-2022-0337","DOIUrl":"https://doi.org/10.1515/tnsci-2022-0337","url":null,"abstract":"<p><strong>Background: </strong>Forkhead box P3 (<i>FOXP3</i>) plays a critical role in the pathogenesis of autoimmune disorders. In the present study, we genotyped three single-nucleotide polymorphisms, namely, rs2232365, rs3761548, and rs3761549, to determine the relationship between <i>FOXP3</i> polymorphisms and neuromyelitis optica spectrum disorder (NMOSD) susceptibility among the Northern Chinese Han population.</p><p><strong>Materials and methods: </strong>We genotyped single nucleotide polymorphisms at loci of the <i>FOXP3</i> gene (rs2232365, rs3761548, and rs3761549136) in 136 NMOSD patients and 224 healthy subjects using the multiplex SNaPshot technique. Allele, genotype, and haplotype frequencies were compared. qPCR was used to analyze the mRNA expression levels of <i>FOXP3</i> in the peripheral blood mononuclear cells of 63 NMOSD patients and 35 healthy subjects. Non-parametric tests were used to test the FOXP3 mRNA expression across the different groups.</p><p><strong>Results: </strong>The minor allele frequency (MAF) of G in rs2232365 was markedly lower in the NMOSD group than in the control group (odds ratio [OR] = 0.57, 95% confidence interval [95% CI]: 0.41-0.79, <i>p</i> = 0.001). Using genetic (codominant, dominant, and recessive) models and performing haplotype analyses, the MAF of G in rs2232365 was shown to be associated with protection against NMOSD in this population. Furthermore, haplotype analysis revealed that the haplotype GCT and the rs2232365, rs3761548, and rs3761549 alleles predicted protection against NMOSD (OR = 0.63, 95% CI = 0.41-0.97, <i>p</i> = 0.038). The proportions of the three genotypes of rs2232365 (<i>p</i> = 0.001) were not significantly different between the moderate-to-severe (Expanded Disability Status Scale (EDSS) ≥ 3 points) and mild (EDSS < 3 points) groups. Evidently, the proportion of patients with the AA genotype (64.3%) among the rs2232365 patients was significantly greater in the moderate-to-severe group than in the mild group (36.4%). However, the proportion of patients with the GG genotype (15.2%) among the rs2232365 patients was significantly greater in the mild group than in the moderate-to-severe group (2.9%). The mRNA expression of <i>FOXP3</i> was markedly greater in the NMOSD group than in the control group (<i>p</i> = 0.001). Nevertheless, acute non-treatment patients exhibited lower FOXP3 mRNA expression than healthy controls and patients in the remission group (<i>p</i> = 0.004 and 0.007, respectively).</p><p><strong>Conclusion: </strong><i>FOXP3</i> polymorphisms and haplotypes are related to NMOSD susceptibility among the Han Chinese population. The minor allele G of <i>FOXP3</i> rs2232365 and the haplotype GCT are associated with protection against NMOSD. The GG genotype may decrease the severity of NMOSD, whereas the AA genotype is related to moderate-to-severe NMOSD. <i>FOXP3</i> mRNA expression is greater in patients with NMOSD than in healthy controls. However, it is decr","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10998649/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140874875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of CRASH and IMPACT in predicting the outcome of 340 patients with traumatic brain injury. CRASH 和 IMPACT 预测 340 名脑外伤患者预后的比较分析。
IF 2.1 4区 医学
Translational Neuroscience Pub Date : 2024-03-22 eCollection Date: 2024-01-01 DOI: 10.1515/tnsci-2022-0327
Tingting An, Zibei Dong, Xiangyang Li, Yifan Ma, Jie Jin, Liqing Li, Lanjuan Xu
{"title":"Comparative analysis of CRASH and IMPACT in predicting the outcome of 340 patients with traumatic brain injury.","authors":"Tingting An, Zibei Dong, Xiangyang Li, Yifan Ma, Jie Jin, Liqing Li, Lanjuan Xu","doi":"10.1515/tnsci-2022-0327","DOIUrl":"10.1515/tnsci-2022-0327","url":null,"abstract":"<p><strong>Background: </strong>Both the International Mission for Prognosis and Analysis of Clinical Trials (IMPACT) and the Corticosteroid randomization after significant head injury (CRASH) models are globally acknowledged prognostic algorithms for assessing traumatic brain injury (TBI) outcomes. The aim of this study is to externalize the validation process and juxtapose the prognostic accuracy of the CRASH and IMPACT models in moderate-to-severe TBI patients in the Chinese population.</p><p><strong>Methods: </strong>We conducted a retrospective study encompassing a cohort of 340 adult TBI patients (aged > 18 years), presenting with Glasgow Coma Scale (GCS) scores ranging from 3 to 12. The data were accrued over 2 years (2020-2022). The primary endpoints were 14-day mortality rates and 6-month Glasgow Outcome Scale (GOS) scores. Analytical metrics, including the area under the receiver operating characteristic curve for discrimination and the Brier score for predictive precision were employed to quantitatively evaluate the model performance.</p><p><strong>Results: </strong>Mortality rates at the 14-day and 6-month intervals, as well as the 6-month unfavorable GOS outcomes, were established to be 22.06, 40.29, and 65.59%, respectively. The IMPACT models had area under the curves (AUCs) of 0.873, 0.912, and 0.927 for the 6-month unfavorable GOS outcomes, with respective Brier scores of 0.14, 0.12, and 0.11. On the other hand, the AUCs associated with the six-month mortality were 0.883, 0.909, and 0.912, and the corresponding Brier scores were 0.15, 0.14, and 0.13, respectively. The CRASH models exhibited AUCs of 0.862 and 0.878 for the 6-month adverse outcomes, with uniform Brier scores of 0.18. The 14-day mortality rates had AUCs of 0.867 and 0.87, and corresponding Brier scores of 0.21 and 0.22, respectively.</p><p><strong>Conclusion: </strong>Both the CRASH and IMPACT algorithms offer reliable prognostic estimations for patients suffering from craniocerebral injuries. However, compared to the CRASH model, the IMPACT model has superior predictive accuracy, albeit at the cost of increased computational intricacy.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10961482/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140289086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early exercise intervention promotes myelin repair in the brains of ischemic rats by inhibiting the MEK/ERK pathway. 早期运动干预通过抑制 MEK/ERK 通路促进缺血大鼠大脑的髓鞘修复。
IF 2.1 4区 医学
Translational Neuroscience Pub Date : 2024-03-14 eCollection Date: 2024-01-01 DOI: 10.1515/tnsci-2022-0335
Junyi Wang, Xinyu Ding, Chen Li, Chuan Huang, Changkai Ke, Chunlei Xu, Chunxiao Wan
{"title":"Early exercise intervention promotes myelin repair in the brains of ischemic rats by inhibiting the MEK/ERK pathway.","authors":"Junyi Wang, Xinyu Ding, Chen Li, Chuan Huang, Changkai Ke, Chunlei Xu, Chunxiao Wan","doi":"10.1515/tnsci-2022-0335","DOIUrl":"10.1515/tnsci-2022-0335","url":null,"abstract":"<p><p>Our previous studies have shown that early exercise intervention after stroke increases neural activity and synaptic plasticity and promotes the recovery of nerve fiber bundle integrity in the brain. However, the effect of exercise on the repair of myelin in the brain and the related mechanism are still unclear. In this study, we randomly divided the rats into three groups. Before and after 28 days of intervention, body weight, nerve function, the infarct size, white matter fiber bundle integrity, and nerve myelin structure and function were observed by measuring body weight, analysis of modified neurological severity score, CatWalk gait analysis, MRI, luxol fast blue staining, immunofluorescence, and transmission electron microscopy. Changes in the expression of proteins in the MEK/ERK pathway were assessed. The results showed that early exercise intervention resulted in neurological recovery, decreased the infarct volume and increased nerve fiber integrity, the myelin coverage area, myelin basic protein (MBP) fluorescence intensity expression, and myelin thickness. Furthermore, the expression level of MBP was significantly increased after early exercise intervention, while the expression levels of p-MEK1/2 and p-ERK1/2 were significantly reduced. In the cell study, MBP expression levels were significantly higher in the oxygen and glucose deprivation and administration group.In summary, early exercise intervention after stroke can promote myelin repair by inhibiting the MEK/ERK signaling pathway.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951688/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140178684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silibinin suppresses glioblastoma cell growth, invasion, stemness, and glutamine metabolism by YY1/SLC1A5 pathway. Silibinin 通过 YY1/SLC1A5 途径抑制胶质母细胞瘤细胞的生长、侵袭、干性和谷氨酰胺代谢。
IF 2.1 4区 医学
Translational Neuroscience Pub Date : 2024-02-24 eCollection Date: 2024-01-01 DOI: 10.1515/tnsci-2022-0333
Ming Liu, Xipeng Liu, Jianxin Qiao, Bing Cao
{"title":"Silibinin suppresses glioblastoma cell growth, invasion, stemness, and glutamine metabolism by YY1/SLC1A5 pathway.","authors":"Ming Liu, Xipeng Liu, Jianxin Qiao, Bing Cao","doi":"10.1515/tnsci-2022-0333","DOIUrl":"10.1515/tnsci-2022-0333","url":null,"abstract":"<p><strong>Background: </strong>Silibinin has been found to inhibit glioblastoma (GBM) progression. However, the underlying molecular mechanism by which Silibinin regulates GBM process remains unclear.</p><p><strong>Methods: </strong>GBM cell proliferation, apoptosis, invasion, and stemness are assessed by cell counting kit-8 assay, EdU assay, flow cytometry, transwell assay, and sphere formation assay. Western blot is used to measure the protein expression levels of apoptosis-related markers, solute carrier family 1 member 5 (SLC1A5), and Yin Yang-1 (YY1). Glutamine consumption, glutamate production, and α-ketoglutarate production are detected to evaluate glutamine metabolism in cells. Also, SLC1A5 and YY1 mRNA levels are examined using quantitative real-time PCR. Chromatin immunoprecipitation assay and dual-luciferase reporter assay are used to detect the interaction between YY1 and SLC1A5. Mice xenograft models are constructed to explore Silibinin roles <i>in vivo</i>.</p><p><strong>Results: </strong>Silibinin inhibits GBM cell proliferation, invasion, stemness, and glutamine metabolism, while promotes apoptosis. SLC1A5 is upregulated in GBM and its expression is decreased by Silibinin. SLC1A5 overexpression abolishes the anti-tumor effect of Silibinin in GBM cells. Transcription factor YY1 binds to SLC1A5 promoter region to induce SLC1A5 expression, and the inhibition effect of YY1 knockdown on GBM cell growth, invasion, stemness, and glutamine metabolism can be reversed by SLC1A5 overexpression. In addition, Silibinin reduces GBM tumor growth by regulating YY1/SLC1A5 pathway.</p><p><strong>Conclusion: </strong>Silibinin plays an anti-tumor role in GBM process, which may be achieved via inhibiting YY1/SLC1A5 pathway.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10896183/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139973575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brain expression profiles of two SCN1A antisense RNAs in children and adolescents with epilepsy. 两种 SCN1A 反义 RNA 在儿童和青少年癫痫患者大脑中的表达谱。
IF 2.1 4区 医学
Translational Neuroscience Pub Date : 2024-01-23 eCollection Date: 2024-01-01 DOI: 10.1515/tnsci-2022-0330
Marius Frederik Schneider, Miriam Vogt, Johanna Scheuermann, Veronika Müller, Antje H L Fischer-Hentrich, Thomas Kremer, Sebastian Lugert, Friedrich Metzger, Manfred Kudernatsch, Gerhard Kluger, Till Hartlieb, Soheyl Noachtar, Christian Vollmar, Mathias Kunz, Jörg Christian Tonn, Roland Coras, Ingmar Blümcke, Claudia Pace, Florian Heinen, Christoph Klein, Heidrun Potschka, Ingo Borggraefe
{"title":"Brain expression profiles of two <i>SCN1A</i> antisense RNAs in children and adolescents with epilepsy.","authors":"Marius Frederik Schneider, Miriam Vogt, Johanna Scheuermann, Veronika Müller, Antje H L Fischer-Hentrich, Thomas Kremer, Sebastian Lugert, Friedrich Metzger, Manfred Kudernatsch, Gerhard Kluger, Till Hartlieb, Soheyl Noachtar, Christian Vollmar, Mathias Kunz, Jörg Christian Tonn, Roland Coras, Ingmar Blümcke, Claudia Pace, Florian Heinen, Christoph Klein, Heidrun Potschka, Ingo Borggraefe","doi":"10.1515/tnsci-2022-0330","DOIUrl":"10.1515/tnsci-2022-0330","url":null,"abstract":"<p><strong>Objective: </strong>Heterozygous mutations within the voltage-gated sodium channel α subunit (<i>SCN1A</i>) are responsible for the majority of cases of Dravet syndrome (DS), a severe developmental and epileptic encephalopathy. Development of novel therapeutic approaches is mandatory in order to directly target the molecular consequences of the genetic defect. The aim of the present study was to investigate whether cis-acting long non-coding RNAs (lncRNAs) of <i>SCN1A</i> are expressed in brain specimens of children and adolescent with epilepsy as these molecules comprise possible targets for precision-based therapy approaches.</p><p><strong>Methods: </strong>We investigated <i>SCN1A</i> mRNA expression and expression of two <i>SCN1A</i> related antisense RNAs in brain tissues in different age groups of pediatric non-Dravet patients who underwent surgery for drug resistant epilepsy. The effect of different antisense oligonucleotides (ASOs) directed against <i>SCN1A</i> specific antisense RNAs on <i>SCN1A</i> expression was tested.</p><p><strong>Results: </strong>The <i>SCN1A</i> related antisense RNAs <i>SCN1A</i>-dsAS (downstream antisense, RefSeq identifier: NR_110598) and <i>SCN1A</i>-usAS (upstream AS, <i>SCN1A</i>-AS, RefSeq identifier: NR_110260) were widely expressed in the brain of pediatric patients. Expression patterns revealed a negative correlation of SCN1A-dsAS and a positive correlation of lncRNA <i>SCN1A</i>-usAS with <i>SCN1A</i> mRNA expression. Transfection of SK-N-AS cells with an ASO targeted against <i>SCN1A</i>-dsAS was associated with a significant enhancement of <i>SCN1A</i> mRNA expression and reduction in <i>SCN1A</i>-dsAS transcripts.</p><p><strong>Conclusion: </strong>These findings support the role of <i>SCN1A</i>-dsAS in the suppression of <i>SCN1A</i> mRNA generation. Considering the haploinsufficiency in genetic <i>SCN1A</i> related DS, <i>SCN1A</i>-dsAS is an interesting target candidate for the development of ASOs (AntagoNATs) based precision medicine therapeutic approaches aiming to enhance <i>SCN1A</i> expression in DS.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10811528/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139571447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional connectivity in ADHD children doing Go/No-Go tasks: An fMRI systematic review and meta-analysis. 多动症儿童在完成 Go/No-Go 任务时的功能连接:一项 fMRI 系统回顾和荟萃分析。
IF 2.1 4区 医学
Translational Neuroscience Pub Date : 2023-12-31 eCollection Date: 2023-01-01 DOI: 10.1515/tnsci-2022-0299
Sihyong J Kim, Onur Tanglay, Elizabeth H N Chong, Isabella M Young, Rannulu D Fonseka, Hugh Taylor, Peter Nicholas, Stephane Doyen, Michael E Sughrue
{"title":"Functional connectivity in ADHD children doing Go/No-Go tasks: An fMRI systematic review and meta-analysis.","authors":"Sihyong J Kim, Onur Tanglay, Elizabeth H N Chong, Isabella M Young, Rannulu D Fonseka, Hugh Taylor, Peter Nicholas, Stephane Doyen, Michael E Sughrue","doi":"10.1515/tnsci-2022-0299","DOIUrl":"10.1515/tnsci-2022-0299","url":null,"abstract":"<p><p>Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders diagnosed in childhood. Two common features of ADHD are impaired behavioural inhibition and sustained attention. The Go/No-Go experimental paradigm with concurrent functional magnetic resonance imaging (fMRI) scanning has previously revealed important neurobiological correlates of ADHD such as the supplementary motor area and the prefrontal cortex. The coordinate-based meta-analysis combined with quantitative techniques, such as activation likelihood estimate (ALE) generation, provides an unbiased and objective method of summarising these data to understand the brain network architecture and connectivity in ADHD children. Go/No-Go task-based fMRI studies involving children and adolescent subjects were selected. Coordinates indicating foci of activation were collected to generate ALEs using threshold values (voxel-level: <i>p</i> < 0.001; cluster-level: <i>p</i> < 0.05). ALEs were matched to one of seven canonical brain networks based on the cortical parcellation scheme derived from the Human Connectome Project. Fourteen studies involving 457 children met the eligibility criteria. No significant convergence of Go/No-Go related brain activation was found for ADHD groups. Three significant ALE clusters were detected for brain activation relating to controls or ADHD < controls. Significant clusters were related to specific areas of the default mode network (DMN). Network-based analysis revealed less extensive DMN, dorsal attention network, and limbic network activation in ADHD children compared to controls. The presence of significant ALE clusters may be due to reduced homogeneity in the selected sample demographic and experimental paradigm. Further investigations regarding hemispheric asymmetry in ADHD subjects would be beneficial.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10896184/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139973574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信