Theoretical and Applied Climatology最新文献

筛选
英文 中文
Modeling the effects of irrigated agricultural development on the hydroclimate of the Lake Urmia Basin 模拟灌溉农业发展对乌尔米耶湖盆地水文气候的影响
IF 3.4 4区 地球科学
Theoretical and Applied Climatology Pub Date : 2024-09-06 DOI: 10.1007/s00704-024-05178-0
K. Khademi Ghavni, S. Hejabi, M. Montaseri
{"title":"Modeling the effects of irrigated agricultural development on the hydroclimate of the Lake Urmia Basin","authors":"K. Khademi Ghavni, S. Hejabi, M. Montaseri","doi":"10.1007/s00704-024-05178-0","DOIUrl":"https://doi.org/10.1007/s00704-024-05178-0","url":null,"abstract":"<p>Lake Urmia is one of the world’s largest hyper-saline lakes, which has faced a severe drop in water level in the last three decades. To study the effects of irrigated agriculture development on the hydrology of the Lake Urmia basin, a regional climate model, RegCM, was used to simulate the hydroclimate of the basin under different land use and land cover (LULC) scenarios. The findings demonstrated that the growth of irrigated agriculture increases actual evapotranspiration, and affects other components of water and energy balances. Under the past scenario, the lake’s water right is fully provided. But, under the current scenario, only about 42.2% of the lake’s water right is supplied, and under the future scenario, even the agricultural sector will face a water deficit. Regarding the implementation of the Urmia Lake Restoration Program (ULRP) strategy of reducing water consumption by 40% in the agricultural sector, 59.8% and 15.3% of lake’s water right is provided under current and future scenarios, respectively and if other solutions (water transfer from Kani Sib dam and Silweh dam) are used, 85.3% and 40.8% of the lake’s water right is supplied under current and future scenarios, respectively. Considering the effect of climate change on the hydroclimatic conditions of the basin, it is necessary to study the combined effects of LULC change and climate change on the water balance of Lake Urmia.</p>","PeriodicalId":22945,"journal":{"name":"Theoretical and Applied Climatology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization and prediction of PM2.5 levels in Afghanistan using machine learning techniques 利用机器学习技术描述和预测阿富汗 PM2.5 水平
IF 3.4 4区 地球科学
Theoretical and Applied Climatology Pub Date : 2024-09-06 DOI: 10.1007/s00704-024-05172-6
Obaidullah Salehie, Mohamad Hidayat Bin Jamal, Shamsuddin Shahid
{"title":"Characterization and prediction of PM2.5 levels in Afghanistan using machine learning techniques","authors":"Obaidullah Salehie, Mohamad Hidayat Bin Jamal, Shamsuddin Shahid","doi":"10.1007/s00704-024-05172-6","DOIUrl":"https://doi.org/10.1007/s00704-024-05172-6","url":null,"abstract":"<p>Afghanistan faces severe air quality issues in major cities due to various sources like transportation, domestic energy use, and industrial activity. This study investigates PM2.5 spatiotemporal variability and its future relationship with six meteorological variables: precipitation, temperature, dewpoint temperature, wind speed, boundary layer height and surface pressure. This study aims to assess the spatiotemporal variability of PM2.5 concentrations in Afghanistan and derive models for predicting PM2.5 from the six variables. Satellite-measured PM2.5 and six reanalyses (ERA5) meteorological datasets for 1998–2020 were used as predictors. Three machine learning models, AdaBoost, Random Forest (RF), and Support Vector Machine (SVM), were used to develop the annual and seasonal PM2.5 concentration prediction model. Results suggest PM2.5 levels ranging from 60–80 µg/m<sup>3</sup> in northern, southern, and western regions, while other areas experience lower levels (12–50 µg/m<sup>3</sup>). The lowest PM2.5 concentrations are in the Hindu Kush mountain range. Summer exhibited the highest PM2.5 concentrations, reaching a maximum of 137.4 µg/m<sup>3</sup> and an average of 48.5 µg/m<sup>3</sup>. Among the prediction models, RF performed best in predicting PM2.5 across Afghanistan, as evidenced by the evaluation metrics: NRMSE (59.2), RSR (0.59), rSD (0.75), and higher values of NSE (0.65), R<sup>2</sup> (0.65), and KGE (0.68). The geographical and seasonal distribution of observed PM2.5 distribution was very similar to the PM2.5 estimated using RF compared to the other two models. The analysis showed that air temperature, precipitation, wind speeds, and boundary layer heights play significant roles in PM2.5 distribution. However, the relationship between precipitation and PM2.5 was more pronounced than other meteorological variables.</p>","PeriodicalId":22945,"journal":{"name":"Theoretical and Applied Climatology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of long-term rainfall trend, variability, and drought in the Awash River Basin, Ethiopia 埃塞俄比亚阿瓦什河流域长期降雨趋势、变化和干旱分析
IF 3.4 4区 地球科学
Theoretical and Applied Climatology Pub Date : 2024-09-06 DOI: 10.1007/s00704-024-05170-8
Elias Meskelu, Mekonen Ayana, Dereje Birhanu
{"title":"Analysis of long-term rainfall trend, variability, and drought in the Awash River Basin, Ethiopia","authors":"Elias Meskelu, Mekonen Ayana, Dereje Birhanu","doi":"10.1007/s00704-024-05170-8","DOIUrl":"https://doi.org/10.1007/s00704-024-05170-8","url":null,"abstract":"<p>Changes in rainfall and drought significantly impact agriculture and water management, making it vital for effective planning and management. This study aimed to analyze rainfall trends and drought conditions in the Awash River Basin, Ethiopia. Twenty meteorological (1985–2021) and nine streamflow (1985–2014) station data were used to analyze rainfall trends, variability, and drought conditions based on the Mann–Kendall test, innovative trend analysis, standardized precipitation index, agricultural standardized precipitation index, reconnaissance drought index, effective reconnaissance drought index, and streamflow drought index. Based on Mann–Kendall’s test results rainfall during the <i>Bega</i> season showed a decreasing trend at all stations while <i>Tsedey</i> and <i>Kiremt</i> seasons showed an increasing trend at the majority of the stations. However, the <i>Belg</i> season and annual rainfall showed no clear trend at the majority of the stations. A significant (<i>p</i> &lt; 0.05) increase at Debre Berhan and a decrease at Awash7kilo and Ginchi were observed in annual rainfall by 44.1, 102.4, and 116.4 mm per decade, respectively. The innovative trend analysis revealed the <i>Tsedey</i> and <i>Bega</i> seasons showed increasing and decreasing trends in the majority of the stations for all rainfall categories, respectively. However, the annual, <i>Belg</i>, and <i>Kiremt</i> rainfall showed no clear trend in the majority of the stations for different rainfall categories. Annual rainfall showed increasing (Debre Berhan, Mojo, and Sheno) and decreasing (Awash7kilo, Dire Dawa, and Ginchi) trends for all rainfall categories. Generally, there is high variability in rainfall during <i>Tsedey</i>, <i>Bega</i>, and <i>Belg</i>, moderate and low variability during <i>Kiremt</i>, and annual with moderate and irregular rainfall distribution for the majority of the stations. The drought analysis revealed that 15.7, 17.3, 30.7, and 16.3% of drought periods were detected with annual standardized precipitation, agricultural standardized precipitation, reconnaissance drought, and effective reconnaissance drought indices, respectively. Hydrological drought conditions also showed a high probability of occurrence amounting to 47.6 and 48.2% for annual and three-month with severe indices of about -2.58 and -4.26 found at Awash Melka Sedi and Metehara gauge stations, respectively. Moderate to extreme hydrometeorological droughts have occurred approximately every six to eight years, with significant drought events recorded in 1987/88, 1991/92, 1996/97, 2001/02, 2003/04, 2014/15, and 2016/17. The results could have paramount importance for water resource policies and planning for rainfall variability and drought management and adaptation strategies in the Awash River basin.</p>","PeriodicalId":22945,"journal":{"name":"Theoretical and Applied Climatology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microwave and optical satellite data fusion for meteorological drought monitoring in the Ganga-Brahmaputra basin 微波和光学卫星数据融合用于恒河-布拉马普特拉河流域气象干旱监测
IF 3.4 4区 地球科学
Theoretical and Applied Climatology Pub Date : 2024-09-05 DOI: 10.1007/s00704-024-05177-1
Kavita Kaushik, Arvind Chandra Pandey, Chandra Shekhar Dwivedi
{"title":"Microwave and optical satellite data fusion for meteorological drought monitoring in the Ganga-Brahmaputra basin","authors":"Kavita Kaushik, Arvind Chandra Pandey, Chandra Shekhar Dwivedi","doi":"10.1007/s00704-024-05177-1","DOIUrl":"https://doi.org/10.1007/s00704-024-05177-1","url":null,"abstract":"<p>The increased meteorological drought conditions are very prominent in the Ganga-Brahmaputra (GB) basin due to the impacts of climate change. In the context of meteorological drought in India, particularly within the GB basin, this study explores the effectiveness of the Microwave Integrated Drought Index (MIDI). The study analyses the use of microwave dataset combined with optical remote sensing data for meteorological drought assessment for 18 years (2003–2020). The MIDI was calculated for the month of October, using multiple datasets (Precipitation (Chips, Cmorph, Persiann CDR, Persiann CCS CDR), Temperature (MODIS Land Surface Temperature (LST)), and Soil Moisture (Climate Change Initiative Soil MoistureCCISMv.02.2)) and their ensemble. MODIS-based Enhanced Vegetation Index (EVI), Standardized Precipitation Index (SPI), and Standardized Precipitation Evapotranspiration Index (SPEI) were calculated from 1991 to 2020, to understand the previous conditions of drought as well as for correlation analysis. After the analysis of drought conditions based on MIDI, the major drought years observed in the Ganga-Brahmaputra basin were 2011–2012, 2014–2015, 2017–2018, and 2020. The MIDIs were then correlated with the SPI, SPEI, and EVI where the highest significant correlation was found between MIDI and SPEI (0.876), emphasizing the importance of incorporating diverse environmental factors for a comprehensive understanding of drought dynamics. The highest correlation was observed with Chirps precipitation-based MIDI (0.87 to 0.83) and the lowest with MIDI CDR and CCS CDR (0.29 and 0.37 respectively) specifically in the Brahmaputra basin. The various precipitation products reflected different characteristics in their behaviour for different topography that can be analyzed for better monitoring.</p>","PeriodicalId":22945,"journal":{"name":"Theoretical and Applied Climatology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rainfall and flow discharge relationship in Japanese rivers: Effects of climate change on hydrological processes 日本河流的降雨量和流量关系:气候变化对水文过程的影响
IF 3.4 4区 地球科学
Theoretical and Applied Climatology Pub Date : 2024-09-04 DOI: 10.1007/s00704-024-05168-2
Makoto Higashino, Yudai Naka
{"title":"Rainfall and flow discharge relationship in Japanese rivers: Effects of climate change on hydrological processes","authors":"Makoto Higashino, Yudai Naka","doi":"10.1007/s00704-024-05168-2","DOIUrl":"https://doi.org/10.1007/s00704-024-05168-2","url":null,"abstract":"<p>Spatiotemporal change in precipitation induced by climate change can be a concern for riverine disasters. The relationship between precipitation and flow discharge in the 8 rivers from northeast to southwest of Japan (either mainstream or tributary) in which neither manmade dam nor reservoir is present was investigated based on observed data at the stream gauging stations managed by the Ministry of Land, Infrastructure, Transport and Tourism of the Japanese government. Observed data of air temperature, precipitation, etc. by the Japan Meteorological Agency vicinity of the gauging station in the 8 rivers basins were also used in the analyses. The precipitation concentration index (PCI) which is the Gini coefficient of precipitation during a year, and the Gini coefficient of flow discharge were computed for about half a century. The results reveal that annual maximum flow discharge can be related closely to the extreme rainfall events such as annual maximum daily or hourly precipitation. Obtained trends of the PCI were all positive and statistically significant at the 1% level, indicating that an in – equality in rainfall distribution during a year has been accelerated as the air temperature has risen in the basins. Whereas obtained trends of the Gini coefficient of the flow discharge were either positive or negative, and very weakly correlated with the trends in the PCI. Temporal precipitation distributions in a year have changed in the 8 rivers basin, i.e. light rain days (0 – 1 mm/day) have increased whereas rain days with 1 – 10 mm/day have decreased, while no such trend is seen in flow discharge in the 8 rivers. The interaction between surface and subsurface flows, and soil moisture may play important roles in moderating the effects of spatiotemporal change in precipitation. The flow discharge, however, can increase immediately in response to the precipitation when rainfall intensity is sufficiently strong.</p>","PeriodicalId":22945,"journal":{"name":"Theoretical and Applied Climatology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Present and future climate of the Yangtze River Delta region: analysis of the CMIP6 HighResMIP simulations 长江三角洲地区现在和未来的气候:CMIP6 HighResMIP 模拟分析
IF 3.4 4区 地球科学
Theoretical and Applied Climatology Pub Date : 2024-09-03 DOI: 10.1007/s00704-024-05161-9
Ping Yi, Guoxing Chen, Xu Tang
{"title":"Present and future climate of the Yangtze River Delta region: analysis of the CMIP6 HighResMIP simulations","authors":"Ping Yi, Guoxing Chen, Xu Tang","doi":"10.1007/s00704-024-05161-9","DOIUrl":"https://doi.org/10.1007/s00704-024-05161-9","url":null,"abstract":"<p>Global warming is incurring diverse climate changes across different regimes, where high-resolution models provide valuable insights of the regional climate changes for guiding social adaptation and mitigation. Thus, this study is aimed to investigate the capability of high-resolution models in simulating the historical climate (1980–2014) over the Yangtze River Delta (YRD) region, and examine the possible regional climate change in the near future (2031–2050). Data from the highresSST-present and highresSST-future experiments of 5 CMIP6 HighResMIP models (FGOALS-f3-H, HiRAM-SIT-HR, NICAM16-8S, MRI-AGCM3-2-S, and MRI-AGCM3-2-H) were analyzed together with the daily station observations by China Meteorological Administration. Results show that the models generally well simulate the regional means and extreme events of the daily-mean temperature and precipitation over the YRD region for the historical period. The temperature is underestimated in the southern YRD (especially in summer and autumn), causing underestimated meridional gradient. In contrast, the precipitation spatial distribution closely matches observations in all seasons, showing a marked improvement over results from low-resolution models. For the near-future period, the daily-mean temperature is projected to increase by 1.4 ℃, which nearly persists throughout the year and is only slightly milder in winter. The daily-mean precipitation may increase by 0.2 mm day<sup>−1</sup> (~ 6%), with the largest increase in summer (0.4 mm day<sup>−1</sup>) and a slight decrease in winter. Meanwhile, the occurrences of extreme hot events and heavy-precipitation events are increased across the YRD region. Given the substantial implications of these possible imminent changes, more effort is warranted to reduce model uncertainties for enhanced validation.</p>","PeriodicalId":22945,"journal":{"name":"Theoretical and Applied Climatology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of sea surface temperature pattern, variability and their teleconnection with rainfall dynamics over the Gulf of Guinea 分析几内亚湾海面温度模式、变化及其与降雨动态的远程联系
IF 3.4 4区 地球科学
Theoretical and Applied Climatology Pub Date : 2024-09-03 DOI: 10.1007/s00704-024-05145-9
Oye Ideki, Anthony Rocco Lupo
{"title":"Analysis of sea surface temperature pattern, variability and their teleconnection with rainfall dynamics over the Gulf of Guinea","authors":"Oye Ideki, Anthony Rocco Lupo","doi":"10.1007/s00704-024-05145-9","DOIUrl":"https://doi.org/10.1007/s00704-024-05145-9","url":null,"abstract":"<p>Spatial pattern and variability of sea surface temperature SST and their teleconnections with rainfall dynamics in the Gulf of Guinea (GOG) were examined in this study. SST and rainfall data of 50 years (1970–2022) were obtained from ERA5 and NOAA CPC at 0.25° x × 0.25° and 0.5° × 0.5° spatial resolution from longitudes 10°W and 8°W, 6<sup>o</sup>W, 4<sup>o</sup>W, and 2<sup>o</sup>W and latitudes 15°N, 5<sup>o</sup>N, 3<sup>o</sup>N, 15<sup>o</sup>S, 5<sup>o</sup>S, and 3<sup>o</sup>S, distributed along the Gulf of Guinea (GOG) respectively. Analysis was further carried out on twelve rainfall gridded stations distributed along the Gulf of Guinea (GoG) for the characterization of the Rainfall-SST teleconnection across the region while the relationship between the rainfall-SST anomalies, seasonal, inter-annual, and decadal scales was carried out using correlation analyses and composites. Interpolation of the meteorological variables was carried out using Inverse Distance Weight (IDW) from the ArcGIS Spatial Analyst Tool, Ferret, and CDO which were further employed to generate the seasonal and decadal rainfall and SST maps and statistical analysis of the study area. The result of the decadal and seasonal analysis of SST variability from 1970–1980,1980–1990, 1990–2000,2000–2010,2010–2020 and 2022 indicate that SST was highest from 2010 to 2020 at 28.91 °C and fluctuated between (28.49 °C) in the 1970–1980 and (28.08 °C) for the 1980–1990 decade While the seasonal pattern of SST showed marked variability with March–April and May(MAM) recording 29.34 °C with the lowest being in June-July–August(JJA) at 28.7 °C. In terms of decadal analysis of rainfall, the period 2010–2020 recorded the highest amount of rainfall along the coast (3,145.5 mm-3,928.3 mm while 1970–1980 recorded the lowest amount of rainfall (2,650–3.310 mm. To investigate the teleconnection between of SST and rainfall dynamics, statistical analysis was used where the SST values were plotted against seasonal rainfall in 11 stations namely Abidjan, Banjul, Accra, Guinea, Conakry, Cotonou, Dakar Doula, Freetown, Lagos, Lome, and Monrovia. The outcome of the statistical analysis and Standardized Anomaly Index used indicate that Banjul, Cotonou, Dakar, and Doula exhibited statistically insignificant correlation at 0.05 confidence level while Abidjan, Accra, Lagos, Lome, Freetown, and Monrovia showed positive and statistically significant correlation. The spatial pattern of seasonal rainfall climatology categorized into DJF, MAM, JJA, and SON reveals that JJA and SON produced 80% of rainfall in the Coastal GOG followed by MAM. The study affirmed that warm and cold tongues exist in the GOG alongside positive teleconnection and that the spatial variability of SST observed in this study corresponds positively with the decadal and seasonal variability of rainfall.</p>","PeriodicalId":22945,"journal":{"name":"Theoretical and Applied Climatology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The summer warming of Beijing (China) under the Paris Agreement 巴黎协定》下北京(中国)的夏季升温情况
IF 3.4 4区 地球科学
Theoretical and Applied Climatology Pub Date : 2024-09-03 DOI: 10.1007/s00704-024-05164-6
Fengqi Cui, Rafiq Hamdi, Tao Yang, Piet Termonia, Philippe De Maeyer
{"title":"The summer warming of Beijing (China) under the Paris Agreement","authors":"Fengqi Cui, Rafiq Hamdi, Tao Yang, Piet Termonia, Philippe De Maeyer","doi":"10.1007/s00704-024-05164-6","DOIUrl":"https://doi.org/10.1007/s00704-024-05164-6","url":null,"abstract":"<p>The shifting thermal environment brought by global warming presents new concerns for urban residents. However, the lack of urban presentation in the global and regional climate models limits the ability of these models to provide useful information at the urban scale. This study examines the impact of 1.5 °C and 2 °C global warming levels (GWL1.5 and GWL2) on the future summer of Beijing, China. A new statistical-dynamical downscaling (SDD) method was applied using available Coordinated Regional Climate Downscaling Experiment (CORDEX) ensemble data to downscale climate projections across Beijing at different GWLs. The results showed that the maximum air temperature increase reached 3.5 °C and 4 °C at GWL1.5 and GWL2, respectively, in the central urban area of Beijing. The historical urban heat island (UHI) intensity first increased to 2.48 ± 0.97/1.02 ± 0.58 °C in GWL1.5 and then decreased to 2.24 ± 0.98/0.90 ± 0.69 °C in GWL2 at 22:00/09:00. Under GWL1.5, the UHI effect is greater in the eastern metropolitan areas (&gt; 2 °C) than in the western regions (0.5–1.5 °C). The highest daytime and nighttime UHIs occurred mostly in LCZ154 (open high-rise area). The intensity, duration, and frequency of future heat waves (HWs) are increasing, especially in urban areas under GWL2. Climate information on UHIs and HWs under the Paris Agreement would be very helpful for stakeholders and city planners to develop near-term future local adaptation policies.</p>","PeriodicalId":22945,"journal":{"name":"Theoretical and Applied Climatology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Number of workable days as a function of the water balance for planning mechanized sugarcane operations 规划甘蔗机械化作业时可作业天数与水平衡的函数关系
IF 3.4 4区 地球科学
Theoretical and Applied Climatology Pub Date : 2024-09-03 DOI: 10.1007/s00704-024-05180-6
Lígia Negri Corrêa, Andrea Onelia Rodriguez Roa, Vitor Hugo de Almeida Marrafon, Glauco de Souza Rolim
{"title":"Number of workable days as a function of the water balance for planning mechanized sugarcane operations","authors":"Lígia Negri Corrêa, Andrea Onelia Rodriguez Roa, Vitor Hugo de Almeida Marrafon, Glauco de Souza Rolim","doi":"10.1007/s00704-024-05180-6","DOIUrl":"https://doi.org/10.1007/s00704-024-05180-6","url":null,"abstract":"<p>Knowing the number of workable days (NWD) with agricultural machinery during a crop is crucial to mitigate structural soil degradation in conditions of insufficient moisture. Although soil moisture is the most important, field planning often only involves precipitation. This study aimed to quantify NWD for the main sugarcane producing municipalities in Brazil across different seasons, considering the water balance. Two criteria were adopted to determine NWD: one includes days suitable for agricultural activities with daily precipitation less than 5 mm and soil water content between 40 and 90% of available water capacity, while the other only integrates precipitation (&lt; 5 mm). Thirty years of daily climate data were collected for Brazilian locations to calculate the water balance. Cluster analysis was applied to group similar localities based on meteorological and water balance components. The study began with a statistical analysis of variability between groups and intragroup of meteorological and water balance elements. Subsequently, NWD maps were created for the past 30 years (characterization) and the past 10 years (planning), both for dry and rainy periods. A comparative analysis of the two criteria to account NWD was conducted. Over the last decade, significant drought trends led to an approximately 10-day increase in NWD nationwide during both dry and rainy seasons. The NWD criteria choice significantly impacted results, depending on the region of the country, reaching differences of up to 60 days within a total period of 90 days. The criterion considering soil water content tended to underestimate workable days but closely aligned with agricultural reality.</p>","PeriodicalId":22945,"journal":{"name":"Theoretical and Applied Climatology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rainfall trend detection using statistical tests in North Coast of Egypt 利用统计检验检测埃及北海岸的降雨趋势
IF 3.4 4区 地球科学
Theoretical and Applied Climatology Pub Date : 2024-09-02 DOI: 10.1007/s00704-024-05141-z
Rania M. Ragab, Doaa Amin, Ashraf M. Elmoustafa, Nagy A. Ali
{"title":"Rainfall trend detection using statistical tests in North Coast of Egypt","authors":"Rania M. Ragab, Doaa Amin, Ashraf M. Elmoustafa, Nagy A. Ali","doi":"10.1007/s00704-024-05141-z","DOIUrl":"https://doi.org/10.1007/s00704-024-05141-z","url":null,"abstract":"<p>The Mediterranean Coast in Egypt has witnessed a significant change in climate over the past two decades. However, relying solely on prognoses without applying rigorous statistical tests may lead to unreliable results. This research aimed to investigate the historical performance of the rainfall data trend and its change through the time and identify the change points along the Mediterranean coast area of Egypt in order to gain comprehensive insights into future changes. Thus, four tests were applied on the Global Precipitation Climatology Centre (GPCC) data with spatiotemporal resolution (0.25o, Month) to identify abrupt and continuous trends. The applied tests classified into two: parametric and non-parametric tests. Non-parametric tests, such as Mann–Kendall and Sen’s slope tests, were employed to assess trends in the data, while the Pettit test was used as a change point test. On the other hand, the parametric test employed the Buishand test to detect change points. The GPCC rainfall time series last version is available from 1900 until 2019, where those 119 years of time span are divided into three periods; (1900–1940), (1941–1980) and (1981–2019). The research offers a rigorous approach to understanding past trends and identifying change points, revealing decreasing trends in rainfall during 1900–1940 and 1981–2019. January and March had the highest decreases in these periods. 69% of stations showed a significant decrease in annual rainfall, mainly along the Mediterranean coast. Change points were identified in 1931 (delta region) and 1999 (Sinai), with no significant change in the West delta.</p>","PeriodicalId":22945,"journal":{"name":"Theoretical and Applied Climatology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信