Zhiyi Fan, Yuan Wang, Yanlei Zhai, Xiaojiao Gu, Kairong Sun, Dan Zhao, Jinying Wang, Pinqi Sun, Hantang Huang, Jiajun He, Yining Wang, Moshe A. Flaishman, Huiqin Ma
{"title":"ERF100 regulated by ERF28 and NOR controls pectate lyase 7, modulating fig (Ficus carica L.) fruit softening","authors":"Zhiyi Fan, Yuan Wang, Yanlei Zhai, Xiaojiao Gu, Kairong Sun, Dan Zhao, Jinying Wang, Pinqi Sun, Hantang Huang, Jiajun He, Yining Wang, Moshe A. Flaishman, Huiqin Ma","doi":"10.1111/pbi.70085","DOIUrl":"https://doi.org/10.1111/pbi.70085","url":null,"abstract":"The mechanism regulating fruit textural changes has not been fully elucidated. Transcription factor FcERF100 showed rapid transcription repression during drastic texture loss in fig (<i>Ficus carica</i> L.) fruit ripening. Transient overexpression of <i>FcERF100</i> delayed fig fruit softening and significantly decreased the transcript abundance of a key cell wall-modifying pectate lyase gene, <i>FcPL7</i>. Yeast one-hybrid (Y1H) assay, chromatin immunoprecipitation-qPCR, electrophoretic mobility shift assay (EMSA), and dual-luciferase reporter assay revealed that FcERF100 represses <i>FcPL7</i> transcription by direct promoter binding via GCC-box and DRE/CRT elements. Stable transgenic fig lines further verified FcERF100's inhibitory effect on <i>FcPL7</i> expression. We detected FcERF28 as an upstream element of <i>FcERF100</i> by Y1H and EMSA, revealing its binding to, and activation of <i>FcERF100</i> by dual-luciferase assay. Taken together, the FcERF28–FcERF100 transcriptional cascade serves as a synergistic flow-limiting valve for FcPL7 abundance. We then identified a NAC transcription factor, FcNOR, using FcERF100 as the bait by yeast two-hybrid screening. <i>FcNOR</i> silencing retarded fig fruit softening, with decreased <i>FcPL7</i> transcript and pectate lyase activity. FcNOR interacted with FcERF100 to form a protein complex, attenuating FcERF100's transcriptional repression of <i>FcPL7</i>. Moreover, FcNOR bound directly to the promoter of <i>FcERF100</i> and inhibited its transcription. In addition, ethylene treatment upregulated <i>FcNOR</i> and <i>FcPL7</i> expression and downregulated <i>FcERF28</i> and <i>FcERF100</i> expression. Our findings reveal a novel FcERF100-centered regulatory complex and resolve how the complex achieves the necessary cell wall modification during an early stage of fruit growth and implements drastic softening at fruit ripening by modulating component proportions.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"23 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143814270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anya L. Lindström Battle, Angus W. Barrett, Mark D. Fricker, Lee J. Sweetlove
{"title":"Localising enzymes to biomolecular condensates increase their accumulation and benefits engineered metabolic pathway performance in Nicotiana benthamiana","authors":"Anya L. Lindström Battle, Angus W. Barrett, Mark D. Fricker, Lee J. Sweetlove","doi":"10.1111/pbi.70082","DOIUrl":"https://doi.org/10.1111/pbi.70082","url":null,"abstract":"SummaryThe establishment of <jats:italic>Nicotiana benthamiana</jats:italic> as a robust biofactory is complicated by issues such as product toxicity and proteolytic degradation of target proteins/introduced enzymes. Here we investigate whether biomolecular condensates can be used to address these problems. We engineered biomolecular condensates in <jats:italic>N. benthamiana</jats:italic> leaves using transient expression of synthetic modular scaffolds. The <jats:italic>in vivo</jats:italic> properties of the condensates that resulted were consistent with them being liquid‐like bodies with thermodynamic features typical of multicomponent phase‐separating systems. We show that recruitment of enzymes to condensates <jats:italic>in vivo</jats:italic> led to several‐fold yield increases in one‐ and three‐step metabolic pathways (citramalate biosynthesis and poly‐3‐hydroxybutyrate (PHB) biosynthesis, respectively). This enhanced yield could be for several reasons including improved enzyme kinetics, metabolite channelling or avoidance of cytotoxicity by retention of the pathway product within the condensate, which was demonstrated for PHB. However, we also observed a several‐fold increase in the amount of the enzymes that accumulated when they were targeted to the condensates. This suggests that the enzymes were more stable when localised to the condensate than when freely diffusing in the cytosol. We hypothesise that this stability is likely the main driver for increased pathway product production. Our findings provide a foundation for leveraging biomolecular condensates in plant metabolic engineering and advance <jats:italic>N. benthamiana</jats:italic> as a versatile biofactory for industrial applications.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"66 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143813758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Maternal haploid induction in maize via mutation of Gamete Expression protein 1","authors":"Yuhui Sun, Lulu Hou, Chengcheng Li, Zijian Zhou, Jianyu Wu, Haidong Yu","doi":"10.1111/pbi.70081","DOIUrl":"https://doi.org/10.1111/pbi.70081","url":null,"abstract":"SummaryDoubled haploid (DH) technology, based on haploid induction (HI), is a crucial tool in enhancing crop‐breeding efficiency and has been successfully applied in various plant species. While many HI‐related genes have been identified using diverse strategies, the genetic basis and molecular mechanisms underlying HI remain incompletely understood. In this study, we present a novel system for inducing haploid offspring through targeted mutagenesis of the <jats:italic>Zea mays Gamete Expression protein 1</jats:italic> (<jats:italic>ZmGEX1</jats:italic>) gene in maize. Our findings reveal that <jats:italic>zmgex1</jats:italic> heterozygous plants (<jats:italic>zmgex1</jats:italic><jats:sup>+/−</jats:sup>) induce maternal haploids via self‐ and cross‐pollination as the female parent, with an average rate of 1.34%. This indicates that the haploid progeny is exclusively maternal in origin, carrying the maternal genome. We also demonstrate that <jats:italic>ZmGEX1</jats:italic> is expressed in both female spikelets and anthers, localizing to the cytoplasm, nucleus and endoplasmic reticulum. Although the transmission efficiency of the <jats:italic>zmgex1</jats:italic> allele is reduced in female gametophytes, <jats:italic>ZmGEX1</jats:italic> does not affect embryo sac development but influences fertilization. We propose that defective fusion of the sperm and egg nuclei may lead to haploid formation. Finally, a schematic that illustrates the potential application of the new gene <jats:italic>ZmGEX1</jats:italic> in maize breeding programs is proposed. Collectively, this study identifies <jats:italic>ZmGEX1</jats:italic> as a novel gene involved in maternal HI and provides a promising strategy for breeding improvements.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"75 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143813756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rhizobium rhizogenesA4‐derived strains mediate hyper‐efficient transient gene expression in Nicotiana benthamiana and other solanaceous plants","authors":"Juan Carlos Lopez‐Agudelo, Foong‐Jing Goh, Sopio Tchabashvili, Yu‐Seng Huang, Ching‐Yi Huang, Kim‐Teng Lee, Yi‐Chieh Wang, Yu Wu, Hao‐Xun Chang, Chih‐Horng Kuo, Erh‐Min Lai, Chih‐Hang Wu","doi":"10.1111/pbi.70083","DOIUrl":"https://doi.org/10.1111/pbi.70083","url":null,"abstract":"SummaryAgroinfiltration, a method utilizing agrobacteria to transfer DNA into plant cells, is widely used for transient gene expression in plants. Besides the commonly used <jats:italic>Agrobacterium</jats:italic> strains, <jats:italic>Rhizobium rhizogenes</jats:italic> can also introduce foreign DNA into host plants for gene expression. While many <jats:italic>R. rhizogenes</jats:italic> strains have been known for inducing hairy root symptoms, their use for transient expression has not been fully explored. Here, we showed that <jats:italic>R. rhizogenes</jats:italic> A4 outperformed all other tested agrobacterial strains in agroinfiltration experiments on leaves of <jats:italic>Nicotiana benthamiana</jats:italic> and other solanaceous plants. By conducting an agroinfiltration screening in <jats:italic>N. benthamiana</jats:italic> leaves using various agrobacterial strains carrying the RUBY reporter gene cassette, we discovered that A4 mediates the strongest and fastest transient expression. Utilizing the genomic information, we developed a collection of disarmed and modified strains derived from A4. By performing vacuum infiltration assays, we demonstrated that these A4‐derived strains efficiently transiently transform 6‐week‐old <jats:italic>N. benthamiana</jats:italic> leaves, showing less sensitivity to the age of plants compared to the laboratory strain GV3101. Furthermore, we performed agroinfiltration using AS109, an A4‐derived disarmed strain, on the leaves of tomato, pepper, and eggplant. Remarkably, AS109 mediated transient gene expression on tested solanaceous plants more effectively than all the tested commonly used agrobacterial strains. This discovery paves the way for establishing <jats:italic>R. rhizogenes</jats:italic> A4‐derived strains as a new option for enhancing transient expression in <jats:italic>N. benthamiana</jats:italic> and facilitating the functional study of plant genes in other solanaceous species.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"2 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143813757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A large-scale gene regulatory network for rice endosperm starch biosynthesis and its application in genetic improvement of rice quality","authors":"Kunyong Huang, Feifei Lu, Pengfei Chen, Guiai Jiao, Haiyan Lin, Jian Zhang, Shaolu Zhao, Ruijie Cao, Gaoneng Shao, Zhonghua Sheng, Shikai Hu, Shaoqing Tang, Peisong Hu, Xiangjin Wei","doi":"10.1111/pbi.70079","DOIUrl":"https://doi.org/10.1111/pbi.70079","url":null,"abstract":"Rice (<i>Oryza sativa</i> L.) is one of the most important food crops. Starch is the main substance of rice endosperm and largely determines the grain quality and yield. Starch biosynthesis in endosperm is very complex, requiring a series of enzymes which are also regulated by many transcription factors (TFs). But until now, the large-scale regulatory network for rice endosperm starch biosynthesis has not been established. Here, we constructed a rice endosperm starch biosynthesis regulatory network comprised of 277 TFs and 15 starch synthesis enzyme-encoding genes (SSEGs) using DNA affinity chromatography/pull-down combined with liquid chromatography-mass spectrometry (DNA pull-down and LC–MS). In this regulatory network, each SSEG is directly regulated by 7–46 TFs. Based on this network, we found a new pathway ‘ABA-OsABI5-OsERF44-SSEGs’ that regulates rice endosperm starch biosynthesis. We also knocked out five TFs targeting the key amylose synthesis enzyme gene <i>OsGBSSI</i> in <i>japonica</i> rice ‘Nipponbare’ background and found that all mutants had moderately decreased amylose content (AC) in endosperm and improved eating and cooking quality (ECQ). Notably, the knockout of <i>OsSPL7</i> and <i>OsB3</i> improves the ECQ without compromising the rice appearance quality, which was further validated in the <i>indica</i> rice ‘Zhongjiazao17’ background. In summary, this gene regulatory network for rice endosperm starch biosynthesis established here will provide important theoretical and practical guidance for the genetic improvement of rice quality.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"183 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143789757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Somatic embryogenetic receptor kinase TaSERL2 regulates heat stress tolerance in wheat by influencing TaBZR2 protein stability and transcriptional activity.","authors":"Xiang-Yang Hao, Tai-Fei Yu, Chao-Jun Peng, Yi-Han Fu, Yu-Hui Fang, Yan Li, Zhao-Shi Xu, Jun Chen, Hai-Bin Dong, You-Zhi Ma, Wei-Gang Xu","doi":"10.1111/pbi.70045","DOIUrl":"https://doi.org/10.1111/pbi.70045","url":null,"abstract":"<p><p>Heat stress is a major factor limiting crop yield, a challenge intensified by climate change. Initial findings indicate that BES1/BZR1 may use heat shock to regulate plant thermal adaptability independently of BIN2-mediated brassinosteroid signalling, although the exact molecular mechanism remains unclear. In this study, we identified TaBZR2, a wheat gene whose expression showed a strong positive correlation with heat stress tolerance, based on transcriptome analysis of heat-tolerant wheat cultivars. Overexpression of TaBZR2 enhanced heat stress tolerance, while RNA interference of TaBZR2 reduced it. Further analysis revealed that TaBZR2 interacts with and is phosphorylated by wheat somatic embryogenesis receptor-like kinase 2 (TaSERL2). Overexpression of TaSERL2 reduced heat stress tolerance by promoting TaBZR2 degradation and inhibiting its regulation of wheat heat stress response genes. However, heat stress reduced the phosphorylation levels of both TaSERL2 and TaBZR2, lessening TaSERL2's inhibitory effect on TaBZR2 and enhancing the stability of TaBZR2. These results reveal that the TaSERL2-TaBZR2 module negatively regulates plant heat stress tolerance. This study expands the current model of heat stress responses and provides evidence for the role of BES1/BZR1 in heat stress regulation independent of brassinosteroid signalling.</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143778664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular changes in agroinfiltrated leaves of Nicotiana benthamiana expressing suppressor of silencing P19 and coronavirus-like particles","authors":"Louis-Philippe Hamel, Francis Poirier-Gravel, Marie-Ève Paré, Rachel Tardif, Marc-André Comeau, Pierre-Olivier Lavoie, Andréane Langlois, Marie-Claire Goulet, Dominique Michaud, Marc-André D'Aoust","doi":"10.1111/pbi.70075","DOIUrl":"https://doi.org/10.1111/pbi.70075","url":null,"abstract":"The production of coronavirus disease 2019 vaccines can be achieved by transient expression of the spike (S) protein of severe acute respiratory syndrome coronavirus 2 in agroinfiltrated leaves of <i>Nicotiana benthamiana</i>. Relying on bacterial vector <i>Agrobacterium tumefaciens</i>, this process is favoured by co-expression of viral silencing suppressor P19. Upon expression, the S protein enters the cell secretory pathway, before being trafficked to the plasma membrane where formation of coronavirus-like particles (CoVLPs) occurs. We previously characterized the effects of influenza virus hemagglutinin forming VLPs through similar processes. However, leaf samples were only collected after 6 days of expression, and it is unknown whether influenza VLPs (HA-VLPs) and CoVLPs induce similar responses. Here, time course sampling was used to profile responses of <i>N. benthamiana</i> leaf cells expressing P19 only, or P19 and the S protein. The latter triggered early but transient activation of the unfolded protein response and waves of transcription factor genes involved in immunity. Accordingly, defence genes were induced with different expression kinetics, including those promoting lignification, terpene biosynthesis, and oxidative stress. Cross-talk between stress hormone pathways also occurred, including repression of jasmonic acid biosynthesis genes after agroinfiltration, and dampening of salicylic acid responses upon S protein accumulation. Overall, HA-VLP- and CoVLP-induced responses broadly overlapped, suggesting nanoparticle production to have the most effects on plant immunity, regardless of the virus surface proteins expressed. Taking advantage of RNAseq inferences, we finally show the co-expression of Kunitz trypsin inhibitors to reduce CoVLP-induced defence and leaf symptoms, with no adverse effect on plant productivity.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"69 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143784729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Song, Yaya Wen, Yu Zhou, Hui Zhang, Yuqi Tian, Jing Wang, Yaodan Cui, Ruimeng Tan, Dan Xiong, Chuang Meng, Yan Zhou, Qianfeng Li, Zhiming Pan, Qiaoquan Liu, Xinan Jiao
{"title":"Rice-derived SARS-CoV-2 glycoprotein S1 subunit vaccine elicits humoral and cellular immune responses.","authors":"Li Song, Yaya Wen, Yu Zhou, Hui Zhang, Yuqi Tian, Jing Wang, Yaodan Cui, Ruimeng Tan, Dan Xiong, Chuang Meng, Yan Zhou, Qianfeng Li, Zhiming Pan, Qiaoquan Liu, Xinan Jiao","doi":"10.1111/pbi.70077","DOIUrl":"https://doi.org/10.1111/pbi.70077","url":null,"abstract":"<p><p>Since 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing COVID-19, has been spreading and mutating globally despite the expedited approval of many commercial vaccines. Therefore, developing safe, effective and affordable vaccines remains essential to meet the global demand, particularly in developing countries. Transgenic plants have emerged as a promising platform to express recombinant proteins for pharmaceutical and vaccine applications. Two binary vectors, pCAMBIA1300Gt1-S1 and pCAMBIA1300Actin-S1, containing distinct promoters, were constructed and transformed into rice via Agrobacterium. Overall, 56 independent transgenic rice lines were regenerated. Expression analysis revealed that the rice-derived S1 (rS1) protein could be expressed in pGt1::S1 transgenic rice seeds. rS1 protein expression levels reached up to 282 μg/g dry weight, with S1 gene insertion having no effect on grain size and weight. The rS1 protein exhibited a high affinity for human angiotensin-converting enzyme 2 (ACE2) in vitro. Moreover, the immunogenicity of purified rS1 protein co-administered with various adjuvants demonstrated that mice vaccinated with Alum-adjuvant rS1 generated enhanced humoral immune responses with high serum IgG, IgG1 and neutralizing antibody levels. Salmonella Typhimurium flagellin (FliC)-adjuvanted rS1 elicited stronger S1-specific IgG2a levels, promoted splenocyte proliferation and induced mixed Th1/Th2/Th17 cytokine responses. This was evidenced by increased proportions of antigen-specific interferon (IFN)-γ, interleukin-4 (IL-4) and IL-17A-positive CD4<sup>+</sup> T lymphocytes, suggesting its potential to induce both humoral and cellular immune responses. These findings suggest that rS1 protein offers a promising approach for affordable COVID-19 subunit vaccine production, and this strategy can be universally applied to other viral vaccines.</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143778643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yingying Wu, Jinfeng Liu, Xinyuan Sheng, Wenqiu Wang, Tianchi Wang, Marcela Martinez-Sanchez, Songhu Wang, Meiyan Tu, Jiahui Deng, Andrew C Allan, Ross G Atkinson, Niels J Nieuwenhuizen, Xueren Yin, Yunliu Zeng
{"title":"Spatial regulation of chlorophyll degradation in kiwifruit: AcNAC2-AcSGR1/2 cascades mediate rapid de-greening in the inner pericarp.","authors":"Yingying Wu, Jinfeng Liu, Xinyuan Sheng, Wenqiu Wang, Tianchi Wang, Marcela Martinez-Sanchez, Songhu Wang, Meiyan Tu, Jiahui Deng, Andrew C Allan, Ross G Atkinson, Niels J Nieuwenhuizen, Xueren Yin, Yunliu Zeng","doi":"10.1111/pbi.70071","DOIUrl":"https://doi.org/10.1111/pbi.70071","url":null,"abstract":"<p><p>Changes in skin colour, as a visual cue for fruit ripeness, are important physiological markers in many crops including tomato, banana and grape. In kiwifruit, the skin remains brown during ripening, but de-greening of the pericarp occurs to reveal accumulated carotenoids and anthocyanins in gold- and red-fleshed cultivars. In this study, analysis of the inner and outer pericarp of Actinidia chinensis 'Hongyang' revealed faster chlorophyll degradation in the inner pericarp, compared with the outer pericarp. Based on transcriptome analysis, two chlorophyll degradation-related genes encoding Mg-dechelatases (AcSGR1 and AcSGR2) were more abundantly expressed in the inner pericarp, and this correlated with higher Mg-dechelatase enzyme activity in the inner pericarp than in the outer pericarp. Weighted gene co-expression network analysis identified potential regulators of AcSGR1/2. A differentially expressed NAM/ATAF/CUC transcription factor AcNAC2 was identified, which could directly interact with AcSGR1 and AcSGR2 promoters and strongly activate their expression. A closely related NAC, AcNAC3, also enhanced AcSGR1/2 expression, but was less abundantly expressed. Transient expression in tobacco confirmed that AcNAC2 and AcNAC3 promote chlorophyll degradation, and stable overexpression in kiwifruit verified that AcNAC2 acts via up-regulation of AcSGR1/2 gene expression. CRISPR-mediated knockouts of AcNAC2/3 in kiwifruit dramatically reduced expression levels of AcSGR1/2 genes in fruit, leading to significantly delayed chlorophyll degradation and de-greening. Together, these results suggest that differential chlorophyll degradation drives the differences observed in chlorophyll content between the inner and outer pericarp of kiwifruit, which is principally modulated by the transcription factor AcNAC2.</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143778703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}