2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)最新文献

筛选
英文 中文
Lightweight defect detection method of punched nickel-plated steel strip based on GhostNet 基于GhostNet的镀镍冲孔钢带轻量化缺陷检测方法
Jian-qi Li, Yincong Liang, Rui Du, Jingying Wan, Bin-fang Cao, Hui Liu
{"title":"Lightweight defect detection method of punched nickel-plated steel strip based on GhostNet","authors":"Jian-qi Li, Yincong Liang, Rui Du, Jingying Wan, Bin-fang Cao, Hui Liu","doi":"10.1109/prmvia58252.2023.00017","DOIUrl":"https://doi.org/10.1109/prmvia58252.2023.00017","url":null,"abstract":"Aiming at the problem that the defects generated in the production and transportation of punched nickel-plated steel strips are not easy to be detected by deep learning methods, a lightweight, low-redundancy, and high-precision detection method is proposed in this paper. Firstly, a feature extraction network based on GhostNet is constructed, which reduces the amount of computation and feature redundancy while ensuring accuracy. Then the ECA module is applied to the detection head to perform weighted fusion of the features of different channels for better differentiation. Finally, the YOLO detection head is used for multi-scale detection. In the experiment, the mAP of 84.86% was obtained by this method, which proves that this method can be applied to the actual steel strip defect: detection.","PeriodicalId":221346,"journal":{"name":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115539164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transfer Learning on Trial: A Case Study to Apply Existing Models to Heterogeneous Datasets 迁移学习试验:将现有模型应用于异构数据集的案例研究
Lei Jin, Chongxiao Qu, Yongjin Zhang, Changjun Fan, Zhongke Zhu, Shuo Liu
{"title":"Transfer Learning on Trial: A Case Study to Apply Existing Models to Heterogeneous Datasets","authors":"Lei Jin, Chongxiao Qu, Yongjin Zhang, Changjun Fan, Zhongke Zhu, Shuo Liu","doi":"10.1109/prmvia58252.2023.00054","DOIUrl":"https://doi.org/10.1109/prmvia58252.2023.00054","url":null,"abstract":"Nowadays, transfer learning is getting more and more popular in both industry and academia. It enables people to benefit from current advanced AI technologies, which used to be only accessible to professional teams with the most powerful talents, software and hardware resources. It has been proved that transfer learning is the best available option to apply learned patterns for one problem to a different but related problem. But rare research has been done to evaluate the performance of employing an existing model to a less related problem. In this paper, we apply the pre-trained model in the computer vision field, VGG, to a radar dataset, Ionosphere, which is heterogeneous to the above vision data, and carry out extensive experiments. The results show that the classification accuracy is much lower than that in the early research work, and the application of transfer learning should depend on certain situations.","PeriodicalId":221346,"journal":{"name":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","volume":" 18","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120829772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of Dangerous Rural Houses Using Oblique Photogrammetry and Photo Recognition Technology 利用倾斜摄影测量和照片识别技术识别农村危房
Yin Liu, Fangqiang Yu, Jinglin Xu, Peikang Xin
{"title":"Identification of Dangerous Rural Houses Using Oblique Photogrammetry and Photo Recognition Technology","authors":"Yin Liu, Fangqiang Yu, Jinglin Xu, Peikang Xin","doi":"10.1109/PRMVIA58252.2023.00018","DOIUrl":"https://doi.org/10.1109/PRMVIA58252.2023.00018","url":null,"abstract":"Indentify dangerous houses in rural areas isn’t very efficient, considering the large workload to visit the rural area, patchy and untimely manual document’s registration management. This study first uses UAV oblique photography technology to quickly obtain high-resolution aerial photographic images of villages and reconstruct three-dimensional reality models. Then, based on the YOLOv5 algorithm, the features of dangerous houses in aerial photography images are automatically detected, and the features of dangerous houses are mapped to the real 3D model to accurately locate the dangerous buildings. Finally, a digital management platform for rural dangerous houses is developed to support rural managers in identifying, measuring and tracking dangerous houses. The application results in a village along the coast of southern Fujian province showed that the accuracy rate of the final dangerous house screening rate of this method was 92%, and the coverage rate was 95%, which could greatly improve the efficiency, accuracy and coverage of dangerous house screening and reduce the workload of manual screening; and improve management efficiency through platform-based and visual methods.","PeriodicalId":221346,"journal":{"name":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122565982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contrastive Learning with Part Assignment for Fine-grained Ship Image Recognition 基于部件分配的对比学习细粒度船舶图像识别
Zhilin Zhang, Ting Zhang, Zhaoying Liu, Yujian Li
{"title":"Contrastive Learning with Part Assignment for Fine-grained Ship Image Recognition","authors":"Zhilin Zhang, Ting Zhang, Zhaoying Liu, Yujian Li","doi":"10.1109/prmvia58252.2023.00048","DOIUrl":"https://doi.org/10.1109/prmvia58252.2023.00048","url":null,"abstract":"Fine-grained ship image recognition is to discriminate different subcategories of ship categories. Because of the lack of ship data sets and the particularity of the identification task, fine-grained ship recognition is a challenging task. We designed a part assignment module, which has the function of part assignment and extracting import part information. Then, we added the module to the SimCLR contrastive learning framework. This method uses the module to assignment the information in the feature map, extract the key information of key regions, increase the learning ability of contrast learning for key information, in the end, the accuracy of fine-grained classification can be improved.","PeriodicalId":221346,"journal":{"name":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127820837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Object Detection Algorithm for Railway Scenes Based on Infrared and RGB Image Fusion 基于红外和RGB图像融合的铁路场景目标检测算法
Xin Xu, Haixia Pan, Hongqiang Wang, Yefan Cao
{"title":"Object Detection Algorithm for Railway Scenes Based on Infrared and RGB Image Fusion","authors":"Xin Xu, Haixia Pan, Hongqiang Wang, Yefan Cao","doi":"10.1109/prmvia58252.2023.00015","DOIUrl":"https://doi.org/10.1109/prmvia58252.2023.00015","url":null,"abstract":"The driver-assistance system tends to fuse multi-modal sensor data, for instance, the infrared and RGB sensors, to detect intrusion objects to enhance driving safety. However, the semantic misalignment dilemma and the spectral imb-alance between infrared and RGB images make it hard to exp-loit the advantages of multi-sensors in the end-to-end learning system. To solve these problems, we employ the widely used affine transformation on our railway dataset to solve the se-mantic-misalignment issue, in addition, we propose a fusion module, DMF, to fuse the well-aligned features, which can bri-dge the domain gap among different sensors. To this end, we propose an efficient railway invasive object detection network, YOLOv5s-DMF. Compared with the state-of-the-art metho-ds, the YOLOv5s-DMF substantially reduces the MR by 14.23% by employing the well-established decouple head. And our YOLOv5s-DMF further increases the mAP@0.5 by 5.7% and the mAP@0.5:0.95by4.1%.","PeriodicalId":221346,"journal":{"name":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123444729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Priori Lane Selection Strategy for Reinforcement Learning of Dynamic Expressway Tolling 高速公路动态收费强化学习的先验车道选择策略
Xi Zhang, W. Wang, Jing Chen
{"title":"A Priori Lane Selection Strategy for Reinforcement Learning of Dynamic Expressway Tolling","authors":"Xi Zhang, W. Wang, Jing Chen","doi":"10.1109/PRMVIA58252.2023.00031","DOIUrl":"https://doi.org/10.1109/PRMVIA58252.2023.00031","url":null,"abstract":"Dynamic tolling of toll roads is a way to dynamically adjust the toll rates according to the changing road traffic conditions in order to alleviate traffic congestion and improve commuting efficiency. Aiming at the dynamic toll collection problem of Chinese expressway, we design a reinforcement learning simulation environment for China’s expressway network and propose a reinforcement learning dynamic toll model based on a priori lane selection strategy that adapts to the characteristics of the network and travelers’ travel habits. Experiments show that the reinforcement learning-based dynamic tolling can increase the total revenue by more than 10% compared with the fixed- rate tolling scheme and keep the congestion rate at a low level. In addition, the ablation experiments demonstrate that the priori knowledge-based lane selection model can better weigh the \"total revenue\", \"system throughput\" and \"total system travel time\" of the optimized road network under the joint optimization objective","PeriodicalId":221346,"journal":{"name":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116653910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Image Dense Captioning of Irregular Regions Based on Visual Saliency 基于视觉显著性的不规则区域图像密集字幕
Xiaosheng Wen, Ping Jian
{"title":"Image Dense Captioning of Irregular Regions Based on Visual Saliency","authors":"Xiaosheng Wen, Ping Jian","doi":"10.1109/PRMVIA58252.2023.00008","DOIUrl":"https://doi.org/10.1109/PRMVIA58252.2023.00008","url":null,"abstract":"Traditional Dense Captioning intends to describe local details of image with natural language. It usually uses target detection first and then describes the contents in the detected bounding box, which will make the description content rich. But captioning based on target detection often lacks the attention to the association between objects and the environment, or between the objects. And for now, there is no dense captioning method has the ability to deal with irregular areas. To solve these problems, we propose a visual-saliency based region division method. It focuses more on areas than just on objects. Based on the division, the local description of the irregular region is carried out. For each area, we combine the image with the target area to generate features, which are put into the caption model. We used the Visual Genome dataset for training and testing. Through experiments, our model is comparable to the baseline under the traditional bounding box. And the description of irregular region generated by our method is equally good. Our model performs well in image retrieval experiments and has less information redundancy. In the application, we support to manually select the region of interest on the image for description, for assist in expanding the dataset.","PeriodicalId":221346,"journal":{"name":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128857147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust Salient Object Detection via Adversarial Training 基于对抗训练的鲁棒显著目标检测
Yunhao Pan, Chenhong Sui, Haipeng Wang, Hao Liu, Guobin Yang, Ao Wang, Q. Gong
{"title":"Robust Salient Object Detection via Adversarial Training","authors":"Yunhao Pan, Chenhong Sui, Haipeng Wang, Hao Liu, Guobin Yang, Ao Wang, Q. Gong","doi":"10.1109/prmvia58252.2023.00055","DOIUrl":"https://doi.org/10.1109/prmvia58252.2023.00055","url":null,"abstract":"Deep salient object detection has experienced noticeable progress. Unfortunately, most existing methods focus on clean samples regardless of the noise disturbance induced by human or natural factors. This results in the detection performance being extremely vulnerable to small perturbations. To this end, this paper proposes robust salient object detection via adversarial training (ATSOD). In specific, we introduce the classical DSS algorithm and inject it into an adversarial training framework favoring salient object detection. This ensures that, apart from clean samples, adversarial examples involving tiny disturbances are also explored for model training. Comparative experiments are conducted on five popular benchmarks. Experimental results show that despite the slight performance degradation for natural examples, there is a significant performance improvement for adversarial examples.","PeriodicalId":221346,"journal":{"name":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","volume":"os-16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127765750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Binary-like Real Coding Genetic Algorithm 类二进制实编码遗传算法
Yongkang Lan
{"title":"Binary-like Real Coding Genetic Algorithm","authors":"Yongkang Lan","doi":"10.1109/PRMVIA58252.2023.00023","DOIUrl":"https://doi.org/10.1109/PRMVIA58252.2023.00023","url":null,"abstract":"A new real coding genetic algorithm is proposed, which discretizes the continuous feasible region and then makes it continuous and complete by mutation operator and local search operator, thus achieving the uniformity of the discretization and continuity of the genetic algorithm. By comparison with binary genetic algorithm, differential evolution algorithm (DE), particle swarm optimization algorithm (PSO), simulated annealing algorithm (SA), and artificial bee colony algorithm (ABC), the results show that the proposed algorithm outperforms the others in all test functions. The algorithm is applied to the case of optimizing the weights of neural networks and excellent results are obtained, which validates the effectiveness of the algorithm.","PeriodicalId":221346,"journal":{"name":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115809572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulation of Fault Diagnosis Model for Managing Aeronautical Multivariate Heterogeneous Inputs 航空多变量异质输入故障诊断模型仿真
Ying Zhang, Di Peng, Gong Meng, Qian Zhao, Tiantian Li
{"title":"Simulation of Fault Diagnosis Model for Managing Aeronautical Multivariate Heterogeneous Inputs","authors":"Ying Zhang, Di Peng, Gong Meng, Qian Zhao, Tiantian Li","doi":"10.1109/prmvia58252.2023.00043","DOIUrl":"https://doi.org/10.1109/prmvia58252.2023.00043","url":null,"abstract":"This paper studies the fault diagnosis model of aeronautical multivariate heterogeneous input data. Because of the gyroscope’s powerful nonlinear mapping capabilities, it is a natural fit for modeling failure detection, this article combined with a variety of aviation gyro input data with fault monitoring methods, a model simulation method for multivariate heterogeneous input data in different states is proposed, which are one-dimensional and multi-dimensional data fault diagnosis in the standby state of the aircraft, and multi-sensor fault detection in the flight state or stationary state, which can effectively meet the needs of managing the fault diagnosis of multi-heterogeneous input of aviation.","PeriodicalId":221346,"journal":{"name":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127704518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信