Ying Zhang, Di Peng, Gong Meng, Qian Zhao, Tiantian Li
{"title":"航空多变量异质输入故障诊断模型仿真","authors":"Ying Zhang, Di Peng, Gong Meng, Qian Zhao, Tiantian Li","doi":"10.1109/prmvia58252.2023.00043","DOIUrl":null,"url":null,"abstract":"This paper studies the fault diagnosis model of aeronautical multivariate heterogeneous input data. Because of the gyroscope’s powerful nonlinear mapping capabilities, it is a natural fit for modeling failure detection, this article combined with a variety of aviation gyro input data with fault monitoring methods, a model simulation method for multivariate heterogeneous input data in different states is proposed, which are one-dimensional and multi-dimensional data fault diagnosis in the standby state of the aircraft, and multi-sensor fault detection in the flight state or stationary state, which can effectively meet the needs of managing the fault diagnosis of multi-heterogeneous input of aviation.","PeriodicalId":221346,"journal":{"name":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of Fault Diagnosis Model for Managing Aeronautical Multivariate Heterogeneous Inputs\",\"authors\":\"Ying Zhang, Di Peng, Gong Meng, Qian Zhao, Tiantian Li\",\"doi\":\"10.1109/prmvia58252.2023.00043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the fault diagnosis model of aeronautical multivariate heterogeneous input data. Because of the gyroscope’s powerful nonlinear mapping capabilities, it is a natural fit for modeling failure detection, this article combined with a variety of aviation gyro input data with fault monitoring methods, a model simulation method for multivariate heterogeneous input data in different states is proposed, which are one-dimensional and multi-dimensional data fault diagnosis in the standby state of the aircraft, and multi-sensor fault detection in the flight state or stationary state, which can effectively meet the needs of managing the fault diagnosis of multi-heterogeneous input of aviation.\",\"PeriodicalId\":221346,\"journal\":{\"name\":\"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/prmvia58252.2023.00043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/prmvia58252.2023.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation of Fault Diagnosis Model for Managing Aeronautical Multivariate Heterogeneous Inputs
This paper studies the fault diagnosis model of aeronautical multivariate heterogeneous input data. Because of the gyroscope’s powerful nonlinear mapping capabilities, it is a natural fit for modeling failure detection, this article combined with a variety of aviation gyro input data with fault monitoring methods, a model simulation method for multivariate heterogeneous input data in different states is proposed, which are one-dimensional and multi-dimensional data fault diagnosis in the standby state of the aircraft, and multi-sensor fault detection in the flight state or stationary state, which can effectively meet the needs of managing the fault diagnosis of multi-heterogeneous input of aviation.