航空多变量异质输入故障诊断模型仿真

Ying Zhang, Di Peng, Gong Meng, Qian Zhao, Tiantian Li
{"title":"航空多变量异质输入故障诊断模型仿真","authors":"Ying Zhang, Di Peng, Gong Meng, Qian Zhao, Tiantian Li","doi":"10.1109/prmvia58252.2023.00043","DOIUrl":null,"url":null,"abstract":"This paper studies the fault diagnosis model of aeronautical multivariate heterogeneous input data. Because of the gyroscope’s powerful nonlinear mapping capabilities, it is a natural fit for modeling failure detection, this article combined with a variety of aviation gyro input data with fault monitoring methods, a model simulation method for multivariate heterogeneous input data in different states is proposed, which are one-dimensional and multi-dimensional data fault diagnosis in the standby state of the aircraft, and multi-sensor fault detection in the flight state or stationary state, which can effectively meet the needs of managing the fault diagnosis of multi-heterogeneous input of aviation.","PeriodicalId":221346,"journal":{"name":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of Fault Diagnosis Model for Managing Aeronautical Multivariate Heterogeneous Inputs\",\"authors\":\"Ying Zhang, Di Peng, Gong Meng, Qian Zhao, Tiantian Li\",\"doi\":\"10.1109/prmvia58252.2023.00043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the fault diagnosis model of aeronautical multivariate heterogeneous input data. Because of the gyroscope’s powerful nonlinear mapping capabilities, it is a natural fit for modeling failure detection, this article combined with a variety of aviation gyro input data with fault monitoring methods, a model simulation method for multivariate heterogeneous input data in different states is proposed, which are one-dimensional and multi-dimensional data fault diagnosis in the standby state of the aircraft, and multi-sensor fault detection in the flight state or stationary state, which can effectively meet the needs of managing the fault diagnosis of multi-heterogeneous input of aviation.\",\"PeriodicalId\":221346,\"journal\":{\"name\":\"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/prmvia58252.2023.00043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/prmvia58252.2023.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了航空多变量异构输入数据的故障诊断模型。由于陀螺仪强大的非线性映射能力,使其自然适合于建模故障检测,本文结合多种航空陀螺输入数据与故障监测方法,提出了一种不同状态下多元异构输入数据的模型仿真方法,即飞机待机状态下的一维和多维数据故障诊断,以及飞行状态或静止状态下的多传感器故障检测。能够有效地满足航空多异构输入故障诊断管理的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of Fault Diagnosis Model for Managing Aeronautical Multivariate Heterogeneous Inputs
This paper studies the fault diagnosis model of aeronautical multivariate heterogeneous input data. Because of the gyroscope’s powerful nonlinear mapping capabilities, it is a natural fit for modeling failure detection, this article combined with a variety of aviation gyro input data with fault monitoring methods, a model simulation method for multivariate heterogeneous input data in different states is proposed, which are one-dimensional and multi-dimensional data fault diagnosis in the standby state of the aircraft, and multi-sensor fault detection in the flight state or stationary state, which can effectively meet the needs of managing the fault diagnosis of multi-heterogeneous input of aviation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信