基于部件分配的对比学习细粒度船舶图像识别

Zhilin Zhang, Ting Zhang, Zhaoying Liu, Yujian Li
{"title":"基于部件分配的对比学习细粒度船舶图像识别","authors":"Zhilin Zhang, Ting Zhang, Zhaoying Liu, Yujian Li","doi":"10.1109/prmvia58252.2023.00048","DOIUrl":null,"url":null,"abstract":"Fine-grained ship image recognition is to discriminate different subcategories of ship categories. Because of the lack of ship data sets and the particularity of the identification task, fine-grained ship recognition is a challenging task. We designed a part assignment module, which has the function of part assignment and extracting import part information. Then, we added the module to the SimCLR contrastive learning framework. This method uses the module to assignment the information in the feature map, extract the key information of key regions, increase the learning ability of contrast learning for key information, in the end, the accuracy of fine-grained classification can be improved.","PeriodicalId":221346,"journal":{"name":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contrastive Learning with Part Assignment for Fine-grained Ship Image Recognition\",\"authors\":\"Zhilin Zhang, Ting Zhang, Zhaoying Liu, Yujian Li\",\"doi\":\"10.1109/prmvia58252.2023.00048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fine-grained ship image recognition is to discriminate different subcategories of ship categories. Because of the lack of ship data sets and the particularity of the identification task, fine-grained ship recognition is a challenging task. We designed a part assignment module, which has the function of part assignment and extracting import part information. Then, we added the module to the SimCLR contrastive learning framework. This method uses the module to assignment the information in the feature map, extract the key information of key regions, increase the learning ability of contrast learning for key information, in the end, the accuracy of fine-grained classification can be improved.\",\"PeriodicalId\":221346,\"journal\":{\"name\":\"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/prmvia58252.2023.00048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/prmvia58252.2023.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细粒度船舶图像识别是对船舶类别的不同子类别进行区分。由于船舶数据集的缺乏和识别任务的特殊性,细粒度船舶识别是一项具有挑战性的任务。设计了零件分配模块,该模块具有零件分配和提取导入零件信息的功能。然后,将该模块添加到SimCLR对比学习框架中。该方法利用该模块对特征图中的信息进行分配,提取关键区域的关键信息,增加对比学习对关键信息的学习能力,最终提高细粒度分类的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contrastive Learning with Part Assignment for Fine-grained Ship Image Recognition
Fine-grained ship image recognition is to discriminate different subcategories of ship categories. Because of the lack of ship data sets and the particularity of the identification task, fine-grained ship recognition is a challenging task. We designed a part assignment module, which has the function of part assignment and extracting import part information. Then, we added the module to the SimCLR contrastive learning framework. This method uses the module to assignment the information in the feature map, extract the key information of key regions, increase the learning ability of contrast learning for key information, in the end, the accuracy of fine-grained classification can be improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信