Binary-like Real Coding Genetic Algorithm

Yongkang Lan
{"title":"Binary-like Real Coding Genetic Algorithm","authors":"Yongkang Lan","doi":"10.1109/PRMVIA58252.2023.00023","DOIUrl":null,"url":null,"abstract":"A new real coding genetic algorithm is proposed, which discretizes the continuous feasible region and then makes it continuous and complete by mutation operator and local search operator, thus achieving the uniformity of the discretization and continuity of the genetic algorithm. By comparison with binary genetic algorithm, differential evolution algorithm (DE), particle swarm optimization algorithm (PSO), simulated annealing algorithm (SA), and artificial bee colony algorithm (ABC), the results show that the proposed algorithm outperforms the others in all test functions. The algorithm is applied to the case of optimizing the weights of neural networks and excellent results are obtained, which validates the effectiveness of the algorithm.","PeriodicalId":221346,"journal":{"name":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRMVIA58252.2023.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new real coding genetic algorithm is proposed, which discretizes the continuous feasible region and then makes it continuous and complete by mutation operator and local search operator, thus achieving the uniformity of the discretization and continuity of the genetic algorithm. By comparison with binary genetic algorithm, differential evolution algorithm (DE), particle swarm optimization algorithm (PSO), simulated annealing algorithm (SA), and artificial bee colony algorithm (ABC), the results show that the proposed algorithm outperforms the others in all test functions. The algorithm is applied to the case of optimizing the weights of neural networks and excellent results are obtained, which validates the effectiveness of the algorithm.
类二进制实编码遗传算法
提出了一种新的实数编码遗传算法,将连续可行域离散化,再通过变异算子和局部搜索算子使其连续完备,从而实现了遗传算法离散化和连续性的一致性。通过与二元遗传算法、差分进化算法(DE)、粒子群优化算法(PSO)、模拟退火算法(SA)和人工蜂群算法(ABC)的比较,结果表明该算法在所有测试功能上都优于其他算法。将该算法应用于神经网络权值优化的实例,取得了良好的效果,验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信