基于红外和RGB图像融合的铁路场景目标检测算法

Xin Xu, Haixia Pan, Hongqiang Wang, Yefan Cao
{"title":"基于红外和RGB图像融合的铁路场景目标检测算法","authors":"Xin Xu, Haixia Pan, Hongqiang Wang, Yefan Cao","doi":"10.1109/prmvia58252.2023.00015","DOIUrl":null,"url":null,"abstract":"The driver-assistance system tends to fuse multi-modal sensor data, for instance, the infrared and RGB sensors, to detect intrusion objects to enhance driving safety. However, the semantic misalignment dilemma and the spectral imb-alance between infrared and RGB images make it hard to exp-loit the advantages of multi-sensors in the end-to-end learning system. To solve these problems, we employ the widely used affine transformation on our railway dataset to solve the se-mantic-misalignment issue, in addition, we propose a fusion module, DMF, to fuse the well-aligned features, which can bri-dge the domain gap among different sensors. To this end, we propose an efficient railway invasive object detection network, YOLOv5s-DMF. Compared with the state-of-the-art metho-ds, the YOLOv5s-DMF substantially reduces the MR by 14.23% by employing the well-established decouple head. And our YOLOv5s-DMF further increases the mAP@0.5 by 5.7% and the mAP@0.5:0.95by4.1%.","PeriodicalId":221346,"journal":{"name":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Object Detection Algorithm for Railway Scenes Based on Infrared and RGB Image Fusion\",\"authors\":\"Xin Xu, Haixia Pan, Hongqiang Wang, Yefan Cao\",\"doi\":\"10.1109/prmvia58252.2023.00015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The driver-assistance system tends to fuse multi-modal sensor data, for instance, the infrared and RGB sensors, to detect intrusion objects to enhance driving safety. However, the semantic misalignment dilemma and the spectral imb-alance between infrared and RGB images make it hard to exp-loit the advantages of multi-sensors in the end-to-end learning system. To solve these problems, we employ the widely used affine transformation on our railway dataset to solve the se-mantic-misalignment issue, in addition, we propose a fusion module, DMF, to fuse the well-aligned features, which can bri-dge the domain gap among different sensors. To this end, we propose an efficient railway invasive object detection network, YOLOv5s-DMF. Compared with the state-of-the-art metho-ds, the YOLOv5s-DMF substantially reduces the MR by 14.23% by employing the well-established decouple head. And our YOLOv5s-DMF further increases the mAP@0.5 by 5.7% and the mAP@0.5:0.95by4.1%.\",\"PeriodicalId\":221346,\"journal\":{\"name\":\"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/prmvia58252.2023.00015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/prmvia58252.2023.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

驾驶辅助系统倾向于融合多模态传感器数据,如红外和RGB传感器,以检测入侵物体,以提高驾驶安全性。然而,红外和RGB图像之间的语义失调困境和光谱不平衡使得多传感器在端到端学习系统中难以发挥其优势。为了解决这些问题,我们在我们的铁路数据集上采用了广泛使用的仿射变换来解决语义失调问题,此外,我们提出了一个融合模块DMF来融合对齐良好的特征,从而可以弥合不同传感器之间的域差距。为此,我们提出了一种高效的铁路入侵目标检测网络YOLOv5s-DMF。与最先进的方法相比,YOLOv5s-DMF通过采用成熟的解耦头,大大降低了14.23%的磁阻。我们的YOLOv5s-DMF进一步提高了mAP@0.5 5.7%和mAP@0.5:0.95 4.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object Detection Algorithm for Railway Scenes Based on Infrared and RGB Image Fusion
The driver-assistance system tends to fuse multi-modal sensor data, for instance, the infrared and RGB sensors, to detect intrusion objects to enhance driving safety. However, the semantic misalignment dilemma and the spectral imb-alance between infrared and RGB images make it hard to exp-loit the advantages of multi-sensors in the end-to-end learning system. To solve these problems, we employ the widely used affine transformation on our railway dataset to solve the se-mantic-misalignment issue, in addition, we propose a fusion module, DMF, to fuse the well-aligned features, which can bri-dge the domain gap among different sensors. To this end, we propose an efficient railway invasive object detection network, YOLOv5s-DMF. Compared with the state-of-the-art metho-ds, the YOLOv5s-DMF substantially reduces the MR by 14.23% by employing the well-established decouple head. And our YOLOv5s-DMF further increases the mAP@0.5 by 5.7% and the mAP@0.5:0.95by4.1%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信