Keisuke Tomioka, Kohei Miyake, Keigo Misawa, M. Kimura
{"title":"Biological Stimulation Performance of LTPS-TFTs Artificial Retina by Wireless Power Drive","authors":"Keisuke Tomioka, Kohei Miyake, Keigo Misawa, M. Kimura","doi":"10.23919/AM-FPD.2018.8437417","DOIUrl":"https://doi.org/10.23919/AM-FPD.2018.8437417","url":null,"abstract":"Artificial retinas are biological stimulation devices aiming at visual regeneration by stimulating retinas of blind patients. We have developed an artificial retina using low temperature poly silicon thin film transistors (LTPS-TFTs) driven by wireless power transfer. The artificial retina can be installed on a patient's retina and obtain power by wireless power transfer from the coil embedded in the glasses. In this study, we have succeeded in confirming the operation of the artificial retina by wireless power transfer in phosphate buffered saline (PBS).","PeriodicalId":221271,"journal":{"name":"2018 25th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132792878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yih-Chun Chen, Shao-Ku Huang, S. Li, Y. Tsai, Chih‐Ping Chen, Y. Chang
{"title":"Novel Facilely Synthesized spiro[Fluorene-9,9′-phenanthren-10′-one] in D-A-D Hole-transporting Materials for Perovskite Solar Cells","authors":"Yih-Chun Chen, Shao-Ku Huang, S. Li, Y. Tsai, Chih‐Ping Chen, Y. Chang","doi":"10.23919/AM-FPD.2018.8437119","DOIUrl":"https://doi.org/10.23919/AM-FPD.2018.8437119","url":null,"abstract":"This is the first report of donor-acceptor-donor (D-A-D) hole-transporting materials (HTMs) with spiro linkage in perovskite solar cells (PSCs). We demonstrated two novel D-A-D type HTMs with spiro[fluorene-9,9′-phenanthren-10′-one] as the core structure. Yih-series HTMs achieved low cost, high yield, and ease of operation. Yih-2 achieved slightly higher Rs, and Rsh, and hole mobility can enhance the performance of PSCs. Yih-2 exhibited higher Voc and. Z, than did Yih-l. We discuss the photovoltaic performance of PSCs. Consequently, Yih-2 as an HTM in PSCs achieved Jsc of 22.18 mA.cm−2, Voc of 1.02 V, and fill factor of 0.71, corresponding to an overall conversion efficiency of 16.06%, which was similar to that of spiro-OMeTAD (16.08%). The photophysical properties of HTMs were analyzed through time-dependent density functional theory with the B3LYP functional.","PeriodicalId":221271,"journal":{"name":"2018 25th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133222030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High Efficiency Inverted Quantum-dot LED","authors":"Hyo‐Min Kim, Jin Jang","doi":"10.23919/am-fpd.2018.8437373","DOIUrl":"https://doi.org/10.23919/am-fpd.2018.8437373","url":null,"abstract":"This paper reviews the performances of high efficiency quantum-dot light emitting diodes (QLEDs) for displays, such as external quantum efficiency (EQE), current efficiency (CE) and power efficiency (PE). The device structures and materials for hole and electron transport layers are also discussed. Especially, we have developed a new electron transport layer (ETL) of doped ZnO material. Using the ETL we have developed the inverted red (R-), green (G-) and blue (B-) QLEDs exhibiting the maximum current efficiencies of 20.3, 79.2 and 0.4 cd/A, respectively.","PeriodicalId":221271,"journal":{"name":"2018 25th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131758574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of Wavelength and Geometrical Condition on Photosensitivity of Self-Aligned Top-Gate Amorphous InZnO Thin Film Transistors","authors":"Yukun Yang, Huiling Lu, X. Deng, Shengdong Zhang","doi":"10.23919/AM-FPD.2018.8437407","DOIUrl":"https://doi.org/10.23919/AM-FPD.2018.8437407","url":null,"abstract":"We study the wavelength and geometrical condition (channel width and length) dependent photoresponses of self-aligned top-gate amorphous InZnO (IZO) thin-film transistors (TFTs). Under illumination with wavelength ranging from 350~550 nm, with the decreasing of wavelength $(lambda)$, the responsivity is improved obviously but the subthreshold swing deteriorates significantly. The photoelectric properties of a-IZO TFT under monochromatic illumination with various channel width (W) and length (L) are also investigated. The responsivity (R) is found to increase with the decreasing of L and almost irrelevant to W. High $mathrm{I}_{mathrm{ph}}/mathrm{I}_{mathrm{dark}}$ ratio (3.48×105) and R (287 A/W) were achieved. Further performance enhancement will be led by continuous scaling of the channel length.","PeriodicalId":221271,"journal":{"name":"2018 25th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123880435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanoscale tunable optics for photovoltaics and beyond","authors":"A. Dmitriev","doi":"10.23919/AM-FPD.2018.8437440","DOIUrl":"https://doi.org/10.23919/AM-FPD.2018.8437440","url":null,"abstract":"We show how the combination of nano-optics and the nanoferromagnetism gives rise to the new science of real-time magnetically-tunable optics. One example is of giving the 100%+ dynamic tunability to the chiroptical surfaces by introducing the magnetically-tunable optical elements to the optical nanoantennas. Another theme is adding such nanostructures to the thin-film photovoltaics and glass surfaces for the visible photons and thermal management.","PeriodicalId":221271,"journal":{"name":"2018 25th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121390288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Copyright","authors":"","doi":"10.23919/am-fpd.2018.8437360","DOIUrl":"https://doi.org/10.23919/am-fpd.2018.8437360","url":null,"abstract":"","PeriodicalId":221271,"journal":{"name":"2018 25th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129159418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yejin Jo, S. Jeong, Jihoon Choi, Youngmin Choi, Sunho Jeong
{"title":"Transparent Piezoresistive Thin-Films for Strain Sensor Applications","authors":"Yejin Jo, S. Jeong, Jihoon Choi, Youngmin Choi, Sunho Jeong","doi":"10.23919/AM-FPD.2018.8437369","DOIUrl":"https://doi.org/10.23919/AM-FPD.2018.8437369","url":null,"abstract":"The recent exploit of strain sensor devices that can readily monitor human body action, has gained tremendous attention, in the field of various wearable electronics and human-machine interfaces applications. In this study, we report a facile way of forming transparent, piezoresistive composite thin-films from a mixture of conductive polymer, elastomeric polymer and surfactnat. Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), thermoplastic polyurathene (TPU), and capstone 30 are used as a conductive polymer, elastomer and surfactant, respectively. The piezoresistive performances are regulated depending on a compositon of surfactant in PEDOT:PSS-TPU composite thin films. A resistance change as high as 86.5 are obtained when the stretchable composite thin-films are stretched with a strain ranging 0.1 to 0.35, with a transparency of 89.1 % at 550 nm.","PeriodicalId":221271,"journal":{"name":"2018 25th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"7 4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116356422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Yadav, D. Dubey, M. Dembla, S. Chen, Tzu-Wei Liang, J. Jou
{"title":"Carrier Mobility Effect of Electron Transporting Layer on OLED Performance","authors":"R. Yadav, D. Dubey, M. Dembla, S. Chen, Tzu-Wei Liang, J. Jou","doi":"10.23919/AM-FPD.2018.8437431","DOIUrl":"https://doi.org/10.23919/AM-FPD.2018.8437431","url":null,"abstract":"Precise optimization and modeling of electron-hole recombination probability in organic light-emitting diodes (OLEDs) are necessary for developing a comprehensive description of their functioning. High-performance organic materials, new device architecture and advanced processing technologies are developed to emerge the development of the OLED community. It is well acknowledged that electrical processes in the OLEDs include three key steps, i.e. charge injection, charge transport, and charge recombination. In this paper, we demonstrate a quantitative approach to investigate the effects of carrier mobility of electron transporting layer (ETL) on electric field and recombination profile across the organic layers of the device using software package SETFOS. The simulation outcomes proposed that a higher electron mobility results in a wider recombination zone in the desired emissive layer (EML), while narrower in case hole mobility is comparatively higher.","PeriodicalId":221271,"journal":{"name":"2018 25th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117057233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electric Field Thermopower Modulation of Two-Dimensional Electron Gas","authors":"H. Ohta","doi":"10.23919/AM-FPD.2018.8437377","DOIUrl":"https://doi.org/10.23919/AM-FPD.2018.8437377","url":null,"abstract":"Themopower <tex>$(S)$</tex> is known as not only an important physical property for thermoelectric energy conversion but also a useful to understand electronic structures of materials since <tex>$vert Svert$</tex> strongly depends on the energy derivative of the electronic DOS at around the Fermi energy. In case of bulk system, the slope of log <tex>$n$</tex> vs. <tex>$S$</tex> relation should be -ln <tex>$10cdot k_{mathrm{B}}cdot e^{-1}(equiv-198mu mathrm{VK}^{-1}mathrm{decade}^{-1})$</tex> since parabolic shaped <tex>$E-k$</tex> relation at around the conduction band minimum is generally observed. Further, an enhanced <tex>$S$</tex> can be observed by modifying the DOS in low-dimensional structures such as two-dimensional electron gas (2DEG). Here I review the electric field modulated <tex>$S$</tex> of 2DEGs confined in the several transistors including SrTiO<inf>3</inf>, BaSnO3, and AlGaN/GaN heterointerfaces.","PeriodicalId":221271,"journal":{"name":"2018 25th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121963639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Solution Processed Steep Subthreshold OFETs for Low-power and High Sensitivity Bio-chemical Sensing","authors":"Jiaqing Zhao, Qiaofeng Li, Wei Tang, Xiaojun Guo","doi":"10.23919/AM-FPD.2018.8437381","DOIUrl":"https://doi.org/10.23919/AM-FPD.2018.8437381","url":null,"abstract":"Low voltage field effect transistors (OFETs) are achieved by reducing the sub-gap density of states (DOS) at the channel instead of enlarging the gate dielectric capacitance. Further work realizes both large gate dielectric capacitance via low-k/high-k bilayer gate dielectric and significantly reduced sub-gate DOS at the channel in one device structure for steep subthreshold swing OFETs with all solution/printing processes. The use of such steep subthreshold swing OFETs for high sensitivity, low power ion sensing is presented.","PeriodicalId":221271,"journal":{"name":"2018 25th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122092912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}