Yejin Jo, S. Jeong, Jihoon Choi, Youngmin Choi, Sunho Jeong
{"title":"用于应变传感器的透明压阻薄膜","authors":"Yejin Jo, S. Jeong, Jihoon Choi, Youngmin Choi, Sunho Jeong","doi":"10.23919/AM-FPD.2018.8437369","DOIUrl":null,"url":null,"abstract":"The recent exploit of strain sensor devices that can readily monitor human body action, has gained tremendous attention, in the field of various wearable electronics and human-machine interfaces applications. In this study, we report a facile way of forming transparent, piezoresistive composite thin-films from a mixture of conductive polymer, elastomeric polymer and surfactnat. Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), thermoplastic polyurathene (TPU), and capstone 30 are used as a conductive polymer, elastomer and surfactant, respectively. The piezoresistive performances are regulated depending on a compositon of surfactant in PEDOT:PSS-TPU composite thin films. A resistance change as high as 86.5 are obtained when the stretchable composite thin-films are stretched with a strain ranging 0.1 to 0.35, with a transparency of 89.1 % at 550 nm.","PeriodicalId":221271,"journal":{"name":"2018 25th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"7 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transparent Piezoresistive Thin-Films for Strain Sensor Applications\",\"authors\":\"Yejin Jo, S. Jeong, Jihoon Choi, Youngmin Choi, Sunho Jeong\",\"doi\":\"10.23919/AM-FPD.2018.8437369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent exploit of strain sensor devices that can readily monitor human body action, has gained tremendous attention, in the field of various wearable electronics and human-machine interfaces applications. In this study, we report a facile way of forming transparent, piezoresistive composite thin-films from a mixture of conductive polymer, elastomeric polymer and surfactnat. Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), thermoplastic polyurathene (TPU), and capstone 30 are used as a conductive polymer, elastomer and surfactant, respectively. The piezoresistive performances are regulated depending on a compositon of surfactant in PEDOT:PSS-TPU composite thin films. A resistance change as high as 86.5 are obtained when the stretchable composite thin-films are stretched with a strain ranging 0.1 to 0.35, with a transparency of 89.1 % at 550 nm.\",\"PeriodicalId\":221271,\"journal\":{\"name\":\"2018 25th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)\",\"volume\":\"7 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 25th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/AM-FPD.2018.8437369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 25th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AM-FPD.2018.8437369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transparent Piezoresistive Thin-Films for Strain Sensor Applications
The recent exploit of strain sensor devices that can readily monitor human body action, has gained tremendous attention, in the field of various wearable electronics and human-machine interfaces applications. In this study, we report a facile way of forming transparent, piezoresistive composite thin-films from a mixture of conductive polymer, elastomeric polymer and surfactnat. Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), thermoplastic polyurathene (TPU), and capstone 30 are used as a conductive polymer, elastomer and surfactant, respectively. The piezoresistive performances are regulated depending on a compositon of surfactant in PEDOT:PSS-TPU composite thin films. A resistance change as high as 86.5 are obtained when the stretchable composite thin-films are stretched with a strain ranging 0.1 to 0.35, with a transparency of 89.1 % at 550 nm.