Yih-Chun Chen, Shao-Ku Huang, S. Li, Y. Tsai, Chih‐Ping Chen, Y. Chang
{"title":"Novel Facilely Synthesized spiro[Fluorene-9,9′-phenanthren-10′-one] in D-A-D Hole-transporting Materials for Perovskite Solar Cells","authors":"Yih-Chun Chen, Shao-Ku Huang, S. Li, Y. Tsai, Chih‐Ping Chen, Y. Chang","doi":"10.23919/AM-FPD.2018.8437119","DOIUrl":null,"url":null,"abstract":"This is the first report of donor-acceptor-donor (D-A-D) hole-transporting materials (HTMs) with spiro linkage in perovskite solar cells (PSCs). We demonstrated two novel D-A-D type HTMs with spiro[fluorene-9,9′-phenanthren-10′-one] as the core structure. Yih-series HTMs achieved low cost, high yield, and ease of operation. Yih-2 achieved slightly higher Rs, and Rsh, and hole mobility can enhance the performance of PSCs. Yih-2 exhibited higher Voc and. Z, than did Yih-l. We discuss the photovoltaic performance of PSCs. Consequently, Yih-2 as an HTM in PSCs achieved Jsc of 22.18 mA.cm−2, Voc of 1.02 V, and fill factor of 0.71, corresponding to an overall conversion efficiency of 16.06%, which was similar to that of spiro-OMeTAD (16.08%). The photophysical properties of HTMs were analyzed through time-dependent density functional theory with the B3LYP functional.","PeriodicalId":221271,"journal":{"name":"2018 25th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 25th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AM-FPD.2018.8437119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This is the first report of donor-acceptor-donor (D-A-D) hole-transporting materials (HTMs) with spiro linkage in perovskite solar cells (PSCs). We demonstrated two novel D-A-D type HTMs with spiro[fluorene-9,9′-phenanthren-10′-one] as the core structure. Yih-series HTMs achieved low cost, high yield, and ease of operation. Yih-2 achieved slightly higher Rs, and Rsh, and hole mobility can enhance the performance of PSCs. Yih-2 exhibited higher Voc and. Z, than did Yih-l. We discuss the photovoltaic performance of PSCs. Consequently, Yih-2 as an HTM in PSCs achieved Jsc of 22.18 mA.cm−2, Voc of 1.02 V, and fill factor of 0.71, corresponding to an overall conversion efficiency of 16.06%, which was similar to that of spiro-OMeTAD (16.08%). The photophysical properties of HTMs were analyzed through time-dependent density functional theory with the B3LYP functional.