{"title":"Modal Spring Reverb Based on Discretisation of the Thin Helical Spring Model","authors":"Jacob McQuillan, M. V. Walstijn","doi":"10.23919/DAFx51585.2021.9768284","DOIUrl":"https://doi.org/10.23919/DAFx51585.2021.9768284","url":null,"abstract":"The distributed nature of coupling in helical springs presents specific challenges in obtaining efficient computational structures for accurate spring reverb simulation. For direct simulation approaches, such as finite-difference methods, this is typically manifested in significant numerical dispersion within the hearing range. Building on a recent study of a simpler spring model, this paper presents an alternative discretisation approach that employs higher-order spatial approximations and applies centred stencils at the boundaries to address the underlying linear-system eigenvalue problem. Temporal discretisation is then applied to the resultant uncoupled mode system, rendering an efficient and flexible modal reverb structure. Through dispersion analysis it is shown that numerical dispersion errors can be kept extremely small across the hearing range for a relatively low number of system nodes. Analysis of an impulse response simulated using model parameters calculated from a measured spring geometry confirms that the model captures an enhanced set of spring characteristics.","PeriodicalId":221170,"journal":{"name":"2021 24th International Conference on Digital Audio Effects (DAFx)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134232883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sebastian Rosenzweig, Simon Schwär, Jonathan Driedger, Meinard Müller
{"title":"Adaptive Pitch-Shifting with Applications to Intonation Adjustment in a Cappella Recordings","authors":"Sebastian Rosenzweig, Simon Schwär, Jonathan Driedger, Meinard Müller","doi":"10.23919/DAFx51585.2021.9768268","DOIUrl":"https://doi.org/10.23919/DAFx51585.2021.9768268","url":null,"abstract":"A central challenge for a cappella singers is to adjust their intonation and to stay in tune relative to their fellow singers. During editing of a cappella recordings, one may want to adjust local intonation of individual singers or account for global intonation drifts over time. This requires applying a time-varying pitch-shift to the audio recording, which we refer to as adaptive pitch-shifting. In this context, existing (semi-)automatic approaches are either labor-intensive or face technical and musical limitations. In this work, we present automatic methods and tools for adaptive pitch-shifting with applications to intonation adjustment in a cappella recordings. To this end, we show how to incorporate time-varying information into existing pitch-shifting algorithms that are based on resampling and time-scale modification (TSM). Furthermore, we release an open-source Python toolbox, which includes a variety of TSM algorithms and an implementation of our method. Finally, we show the potential of our tools by two case studies on global and local intonation adjustment in a cappella recordings using a publicly available multitrack dataset of amateur choral singing.","PeriodicalId":221170,"journal":{"name":"2021 24th International Conference on Digital Audio Effects (DAFx)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133723316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quality Diversity for Synthesizer Sound Matching","authors":"Naotake Masuda, D. Saito","doi":"10.23919/DAFx51585.2021.9768271","DOIUrl":"https://doi.org/10.23919/DAFx51585.2021.9768271","url":null,"abstract":"It is difficult to adjust the parameters of a complex synthesizer to create the desired sound. As such, sound matching, the estimation of synthesis parameters that can replicate a certain sound, is a task that has often been researched, utilizing optimization methods such as genetic algorithm (GA). In this paper, we introduce a novelty-based objective for GA-based sound matching. Our contribution is two-fold. First, we show that the novelty objective is able to improve the quality of sound matching by maintaining phenotypic diversity in the population. Second, we introduce a quality diversity approach to the problem of sound matching, aiming to find a diverse set of matching sounds. We show that the novelty objective is effective in producing high-performing solutions that are diverse in terms of specified audio features. This approach allows for a new way of discovering sounds and exploring the capabilities of a synthesizer.","PeriodicalId":221170,"journal":{"name":"2021 24th International Conference on Digital Audio Effects (DAFx)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122970006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Role of Modal Excitation in Colorless Reverberation","authors":"Janis Heldmann, Sebastian J. Schlecht","doi":"10.23919/DAFx51585.2021.9768217","DOIUrl":"https://doi.org/10.23919/DAFx51585.2021.9768217","url":null,"abstract":"A perceptual study revealing a novel connection between modal properties of feedback delay networks (FDNs) and colorless reverberation is presented. The coloration of the reverberation tail is quantified by the modal excitation distribution derived from the modal decomposition of the FDN. A homogeneously decaying allpass FDN is designed to be colorless such that the corresponding narrow modal excitation distribution leads to a high perceived modal density. Synthetic modal excitation distributions are generated to match modal excitations of FDNs. Three listening tests were conducted to demonstrate the correlation between the modal excitation distribution and the perceived degree of coloration. A fourth test shows a significant reduction of coloration by the colorless FDN compared to other FDN designs. The novel connection of modal excitation, allpass FDNs, and perceived coloration presents a beneficial design criterion for colorless artificial reverberation.","PeriodicalId":221170,"journal":{"name":"2021 24th International Conference on Digital Audio Effects (DAFx)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115201347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Audio-Visual Fusion Piano Transcription Approach Based on Strategy","authors":"Xianke Wang, Wei Xu, Juanting Liu, Weiming Yang, Wenqing Cheng","doi":"10.23919/DAFx51585.2021.9768275","DOIUrl":"https://doi.org/10.23919/DAFx51585.2021.9768275","url":null,"abstract":"Piano transcription is a fundamental problem in the field of music information retrieval. At present, a large number of transcriptional studies are mainly based on audio or video, yet there is a small number of discussion based on audio-visual fusion. In this paper, a piano transcription model based on strategy fusion is proposed, in which the transcription results of the video model are used to assist audio transcription. Due to the lack of datasets currently used for audio-visual fusion, the OMAPS data set is proposed in this paper. Meanwhile, our strategy fusion model achieves a 92.07% F1 score on OMAPS dataset. The transcription model based on feature fusion is also compared with the one based on strategy fusion. The experiment results show that the transcription model based on strategy fusion achieves better results than the one based on feature fusion.","PeriodicalId":221170,"journal":{"name":"2021 24th International Conference on Digital Audio Effects (DAFx)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126949485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Equivalent Circuit Interpretation of Antiderivative Antialiasing","authors":"K. Werner","doi":"10.23919/DAFx51585.2021.9768265","DOIUrl":"https://doi.org/10.23919/DAFx51585.2021.9768265","url":null,"abstract":"The recently proposed antiderivative antialiasing (ADAA) technique for stateful systems involves two key features: 1) replacing a nonlinearity in a physical model or virtual analog simulation with an antialiased nonlinear system involving antiderivatives of the nonlinearity and time delays and 2) introducing a digital filter in cascade with each original delay in the system. Both of these features introduce the same delay, which is compensated by adjusting the sampling period. The result is a simulation with reduced aliasing distortion. In this paper, we study ADAA using equivalent circuits, answering the question: “Which electrical circuit, discretized using the bilinear transform, yields the ADAA system?” This gives us a new way of looking at the stability of ADAA and how introducing extra filtering distorts a system's response. We focus on the Wave Digital Filter (WDF) version of this technique.","PeriodicalId":221170,"journal":{"name":"2021 24th International Conference on Digital Audio Effects (DAFx)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129607586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Real-Time Implementation of a Friction Drum Inspired Instrument Using Finite Difference Schemes","authors":"Marius George Onofrei, S. Willemsen, S. Serafin","doi":"10.23919/DAFx51585.2021.9768291","DOIUrl":"https://doi.org/10.23919/DAFx51585.2021.9768291","url":null,"abstract":"Physical modelling sound synthesis is a powerful method for constructing virtual instruments aiming to mimic the sound of real-world counterparts, while allowing for the possibility of engaging with these instruments in ways which may be impossible in person. Such a case is explored in this paper: particularly the simulation of a friction drum inspired instrument. It is an instrument played by causing the membrane of a drum head to vibrate via friction. This involves rubbing the membrane via a stick or a cord attached to its center, with the induced vibrations being transferred to the air inside a sound box. This paper describes the development of a real-time audio application which models such an instrument as a bowed membrane connected to an acoustic tube. This is done by means of a numerical simulation using finite-difference time-domain (FDTD) methods in which the excitation, whose position is free to change in real-time, is modelled by a highly non-linear elasto-plastic friction model. Additionally, the virtual instrument allows for dynamically modifying physical parameters of the model, thereby allowing the user to generate new and interesting sounds that go beyond a real-world friction drum.","PeriodicalId":221170,"journal":{"name":"2021 24th International Conference on Digital Audio Effects (DAFx)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127717114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Topologizing Sound Synthesis Via Sheaves","authors":"Georg Essl","doi":"10.23919/DAFx51585.2021.9768226","DOIUrl":"https://doi.org/10.23919/DAFx51585.2021.9768226","url":null,"abstract":"In recent years, a range of topological methods have emerged for processing digital signals. In this paper we show how the construction of topological filters via sheaves can be used to topologize existing sound synthesis methods. I illustrate this process on two classes of synthesis approaches: (1) based on linear-time invariant digital filters and (2) based on oscillators defined on a circle. We use the computationally-friendly approach to modeling topologies via a simplicial complex, and we attach our classical synthesis methods to them via sheaves. In particular, we explore examples of simplicial topologies that mimic sampled lines and loops. Over these spaces we realize concrete examples of simple discrete harmonic oscillators (resonant filters), and simple comb filter based algorithms (such as Karplus-Strong) as well as frequency modulation.","PeriodicalId":221170,"journal":{"name":"2021 24th International Conference on Digital Audio Effects (DAFx)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133858629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Differentiable White-Box Virtual Analog Modeling","authors":"Fabian Esqueda, Boris Kuznetsov, Julian Parker","doi":"10.23919/DAFx51585.2021.9768272","DOIUrl":"https://doi.org/10.23919/DAFx51585.2021.9768272","url":null,"abstract":"Component-wise circuit modeling, also known as “white-box” modeling, is a well established and much discussed technique in virtual analog modeling. This approach is generally limited in accuracy by lack of access to the exact component values present in a real example of the circuit. In this paper we show how this problem can be addressed by implementing the white-box model in a differentiable form, and allowing approximate component values to be learned from raw input-output audio measured from a real device.","PeriodicalId":221170,"journal":{"name":"2021 24th International Conference on Digital Audio Effects (DAFx)","volume":"449 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122800495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simulating a Hexaphonic Pickup Using Parallel Comb Filters for Guitar Distortion","authors":"Sebastian Laguerre, G. Scavone","doi":"10.23919/DAFx51585.2021.9768242","DOIUrl":"https://doi.org/10.23919/DAFx51585.2021.9768242","url":null,"abstract":"This paper introduces hexaphonic distortion as a way of achieving harmonically rich guitar distortion while minimizing intermodulation products regardless of playing style. The simulated hexaphonic distortion effect described in this paper attempts to reproduce the characteristics of hexaphonic distortion for use with ordinary electric guitars with mono pickups. The proposed approach uses a parallel comb filter structure that separates a mono guitar signal into its harmonic components. This simulates the six individual string signals obtained from a hexaphonic pickup. Each of the signals are then individually distorted with oversampling used to avoid aliasing artifacts. Starting with the baseline of the distorted mono signal, the simulated distortion produces fewer intermodulation products with a result approaching that of hex aphonic distortion.","PeriodicalId":221170,"journal":{"name":"2021 24th International Conference on Digital Audio Effects (DAFx)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122705564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}