{"title":"合成器声音匹配的质量多样性","authors":"Naotake Masuda, D. Saito","doi":"10.23919/DAFx51585.2021.9768271","DOIUrl":null,"url":null,"abstract":"It is difficult to adjust the parameters of a complex synthesizer to create the desired sound. As such, sound matching, the estimation of synthesis parameters that can replicate a certain sound, is a task that has often been researched, utilizing optimization methods such as genetic algorithm (GA). In this paper, we introduce a novelty-based objective for GA-based sound matching. Our contribution is two-fold. First, we show that the novelty objective is able to improve the quality of sound matching by maintaining phenotypic diversity in the population. Second, we introduce a quality diversity approach to the problem of sound matching, aiming to find a diverse set of matching sounds. We show that the novelty objective is effective in producing high-performing solutions that are diverse in terms of specified audio features. This approach allows for a new way of discovering sounds and exploring the capabilities of a synthesizer.","PeriodicalId":221170,"journal":{"name":"2021 24th International Conference on Digital Audio Effects (DAFx)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Quality Diversity for Synthesizer Sound Matching\",\"authors\":\"Naotake Masuda, D. Saito\",\"doi\":\"10.23919/DAFx51585.2021.9768271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is difficult to adjust the parameters of a complex synthesizer to create the desired sound. As such, sound matching, the estimation of synthesis parameters that can replicate a certain sound, is a task that has often been researched, utilizing optimization methods such as genetic algorithm (GA). In this paper, we introduce a novelty-based objective for GA-based sound matching. Our contribution is two-fold. First, we show that the novelty objective is able to improve the quality of sound matching by maintaining phenotypic diversity in the population. Second, we introduce a quality diversity approach to the problem of sound matching, aiming to find a diverse set of matching sounds. We show that the novelty objective is effective in producing high-performing solutions that are diverse in terms of specified audio features. This approach allows for a new way of discovering sounds and exploring the capabilities of a synthesizer.\",\"PeriodicalId\":221170,\"journal\":{\"name\":\"2021 24th International Conference on Digital Audio Effects (DAFx)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 24th International Conference on Digital Audio Effects (DAFx)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/DAFx51585.2021.9768271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 24th International Conference on Digital Audio Effects (DAFx)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DAFx51585.2021.9768271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
It is difficult to adjust the parameters of a complex synthesizer to create the desired sound. As such, sound matching, the estimation of synthesis parameters that can replicate a certain sound, is a task that has often been researched, utilizing optimization methods such as genetic algorithm (GA). In this paper, we introduce a novelty-based objective for GA-based sound matching. Our contribution is two-fold. First, we show that the novelty objective is able to improve the quality of sound matching by maintaining phenotypic diversity in the population. Second, we introduce a quality diversity approach to the problem of sound matching, aiming to find a diverse set of matching sounds. We show that the novelty objective is effective in producing high-performing solutions that are diverse in terms of specified audio features. This approach allows for a new way of discovering sounds and exploring the capabilities of a synthesizer.