基于细螺旋弹簧模型离散化的模态弹簧混响

Jacob McQuillan, M. V. Walstijn
{"title":"基于细螺旋弹簧模型离散化的模态弹簧混响","authors":"Jacob McQuillan, M. V. Walstijn","doi":"10.23919/DAFx51585.2021.9768284","DOIUrl":null,"url":null,"abstract":"The distributed nature of coupling in helical springs presents specific challenges in obtaining efficient computational structures for accurate spring reverb simulation. For direct simulation approaches, such as finite-difference methods, this is typically manifested in significant numerical dispersion within the hearing range. Building on a recent study of a simpler spring model, this paper presents an alternative discretisation approach that employs higher-order spatial approximations and applies centred stencils at the boundaries to address the underlying linear-system eigenvalue problem. Temporal discretisation is then applied to the resultant uncoupled mode system, rendering an efficient and flexible modal reverb structure. Through dispersion analysis it is shown that numerical dispersion errors can be kept extremely small across the hearing range for a relatively low number of system nodes. Analysis of an impulse response simulated using model parameters calculated from a measured spring geometry confirms that the model captures an enhanced set of spring characteristics.","PeriodicalId":221170,"journal":{"name":"2021 24th International Conference on Digital Audio Effects (DAFx)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modal Spring Reverb Based on Discretisation of the Thin Helical Spring Model\",\"authors\":\"Jacob McQuillan, M. V. Walstijn\",\"doi\":\"10.23919/DAFx51585.2021.9768284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The distributed nature of coupling in helical springs presents specific challenges in obtaining efficient computational structures for accurate spring reverb simulation. For direct simulation approaches, such as finite-difference methods, this is typically manifested in significant numerical dispersion within the hearing range. Building on a recent study of a simpler spring model, this paper presents an alternative discretisation approach that employs higher-order spatial approximations and applies centred stencils at the boundaries to address the underlying linear-system eigenvalue problem. Temporal discretisation is then applied to the resultant uncoupled mode system, rendering an efficient and flexible modal reverb structure. Through dispersion analysis it is shown that numerical dispersion errors can be kept extremely small across the hearing range for a relatively low number of system nodes. Analysis of an impulse response simulated using model parameters calculated from a measured spring geometry confirms that the model captures an enhanced set of spring characteristics.\",\"PeriodicalId\":221170,\"journal\":{\"name\":\"2021 24th International Conference on Digital Audio Effects (DAFx)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 24th International Conference on Digital Audio Effects (DAFx)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/DAFx51585.2021.9768284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 24th International Conference on Digital Audio Effects (DAFx)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DAFx51585.2021.9768284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

螺旋弹簧中耦合的分布特性为精确的弹簧混响模拟提供了有效的计算结构。对于直接模拟方法,如有限差分法,这通常表现在听力范围内显著的数值色散。基于最近对一个更简单的弹簧模型的研究,本文提出了一种替代的离散化方法,该方法采用高阶空间近似,并在边界处应用中心模板来解决潜在的线性系统特征值问题。然后将时间离散化应用于所得到的解耦合模式系统,呈现出高效灵活的模态混响结构。通过色散分析表明,在相对较少的系统节点数量下,数值色散误差可以在整个听觉范围内保持极小。使用从测量的弹簧几何形状计算的模型参数模拟脉冲响应分析证实,该模型捕获了一组增强的弹簧特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modal Spring Reverb Based on Discretisation of the Thin Helical Spring Model
The distributed nature of coupling in helical springs presents specific challenges in obtaining efficient computational structures for accurate spring reverb simulation. For direct simulation approaches, such as finite-difference methods, this is typically manifested in significant numerical dispersion within the hearing range. Building on a recent study of a simpler spring model, this paper presents an alternative discretisation approach that employs higher-order spatial approximations and applies centred stencils at the boundaries to address the underlying linear-system eigenvalue problem. Temporal discretisation is then applied to the resultant uncoupled mode system, rendering an efficient and flexible modal reverb structure. Through dispersion analysis it is shown that numerical dispersion errors can be kept extremely small across the hearing range for a relatively low number of system nodes. Analysis of an impulse response simulated using model parameters calculated from a measured spring geometry confirms that the model captures an enhanced set of spring characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信