{"title":"EPHA2 is a novel cell surface marker of OCT4-positive undifferentiated cells during the differentiation of mouse and human pluripotent stem cells.","authors":"Atsushi Intoh, Kanako Watanabe-Susaki, Taku Kato, Hibiki Kiritani, Akira Kurisaki","doi":"10.1093/stcltm/szae036","DOIUrl":"10.1093/stcltm/szae036","url":null,"abstract":"<p><p>Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) possess the intrinsic ability to differentiate into diverse cellular lineages, marking them as potent instruments in regenerative medicine. Nonetheless, the proclivity of these stem cells to generate teratomas post-transplantation presents a formidable obstacle to their therapeutic utility. In previous studies, we identified an array of cell surface proteins specifically expressed in the pluripotent state, as revealed through proteomic analysis. Here we focused on EPHA2, a protein found to be abundantly present on the surface of undifferentiated mouse ESCs and is diminished upon differentiation. Knock-down of Epha2 led to the spontaneous differentiation of mouse ESCs, underscoring a pivotal role of EPHA2 in maintaining an undifferentiated cell state. Further investigations revealed a strong correlation between EPHA2 and OCT4 expression during the differentiation of both mouse and human PSCs. Notably, removing EPHA2+ cells from mouse ESC-derived hepatic lineage reduced tumor formation after transplanting them into immune-deficient mice. Similarly, in human iPSCs, a larger proportion of EPHA2+ cells correlated with higher OCT4 expression, reflecting the pattern observed in mouse ESCs. Conclusively, EPHA2 emerges as a potential marker for selecting undifferentiated stem cells, providing a valuable method to decrease tumorigenesis risks after stem-cell transplantation in regenerative treatments.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"763-775"},"PeriodicalIF":5.4,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328934/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jia Song, Lingshu Wang, Liming Wang, Xinghong Guo, Qin He, Chen Cui, Huiqing Hu, Nan Zang, Mengmeng Yang, Fei Yan, Kai Liang, Chuan Wang, Fuqiang Liu, Yujing Sun, Zheng Sun, Hong Lai, Xinguo Hou, Li Chen
{"title":"Mesenchymal stromal cells ameliorate mitochondrial dysfunction in α cells and hyperglucagonemia in type 2 diabetes via SIRT1/FoxO3a signaling.","authors":"Jia Song, Lingshu Wang, Liming Wang, Xinghong Guo, Qin He, Chen Cui, Huiqing Hu, Nan Zang, Mengmeng Yang, Fei Yan, Kai Liang, Chuan Wang, Fuqiang Liu, Yujing Sun, Zheng Sun, Hong Lai, Xinguo Hou, Li Chen","doi":"10.1093/stcltm/szae038","DOIUrl":"10.1093/stcltm/szae038","url":null,"abstract":"<p><p>Dysregulation of α cells results in hyperglycemia and hyperglucagonemia in type 2 diabetes mellitus (T2DM). Mesenchymal stromal cell (MSC)-based therapy increases oxygen consumption of islets and enhances insulin secretion. However, the underlying mechanism for the protective role of MSCs in α-cell mitochondrial dysfunction remains unclear. Here, human umbilical cord MSCs (hucMSCs) were used to treat 2 kinds of T2DM mice and αTC1-6 cells to explore the role of hucMSCs in improving α-cell mitochondrial dysfunction and hyperglucagonemia. Plasma and supernatant glucagon were detected by enzyme-linked immunosorbent assay (ELISA). Mitochondrial function of α cells was assessed by the Seahorse Analyzer. To investigate the underlying mechanisms, Sirtuin 1 (SIRT1), Forkhead box O3a (FoxO3a), glucose transporter type1 (GLUT1), and glucokinase (GCK) were assessed by Western blotting analysis. In vivo, hucMSC infusion improved glucose and insulin tolerance, as well as hyperglycemia and hyperglucagonemia in T2DM mice. Meanwhile, hucMSC intervention rescued the islet structure and decreased α- to β-cell ratio. Glucagon secretion from αTC1-6 cells was consistently inhibited by hucMSCs in vitro. Meanwhile, hucMSC treatment activated intracellular SIRT1/FoxO3a signaling, promoted glucose uptake and activation, alleviated mitochondrial dysfunction, and enhanced ATP production. However, transfection of SIRT1 small interfering RNA (siRNA) or the application of SIRT1 inhibitor EX-527 weakened the therapeutic effects of hucMSCs on mitochondrial function and glucagon secretion. Our observations indicate that hucMSCs mitigate mitochondrial dysfunction and glucagon hypersecretion of α cells in T2DM via SIRT1/FoxO3a signaling, which provides novel evidence demonstrating the potential for hucMSCs in treating T2DM.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"776-790"},"PeriodicalIF":5.4,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328933/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141306871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Syngeneic mesenchymal stem cells loaded with telomerase-dependent oncolytic adenoviruses enhance anti-metastatic efficacy.","authors":"Mei-Lin Yang, Che-Yuan Hu, Ya-Che Lee, Chao-Ching Chang, Yi-Cheng Chen, Pei-Ru Lee, Bing-Hua Su, Pi-Che Chen, Ai-Li Shiau, Gia-Shing Shieh, Chao-Liang Wu, Pensee Wu","doi":"10.1093/stcltm/szae039","DOIUrl":"10.1093/stcltm/szae039","url":null,"abstract":"<p><p>Oncolytic adenoviruses have emerged as a promising therapeutic approach for cancer therapy. However, systemic delivery of the viruses to metastatic tumors remains a major challenge. Mesenchymal stem cells (MSCs) possess tumor tropism property and can be used as cellular vehicles for delivering oncolytic adenoviruses to tumor sites. Since telomerase activity is found in ~90% of human carcinomas, but undetected in normal adult cells, the human telomerase reverse transcriptase gene (TERT) promoter can be exploited for regulating the replication of oncolytic adenoviruses. Here, we evaluated the antitumor effects of syngeneic murine MSCs loaded with the luciferase-expressing, telomerase-dependent oncolytic adenovirus Ad.GS2 (MSC-Ad.GS2) and Ad.GS2 alone on metastatic MBT-2 bladder tumors. MSCs supported a low degree of Ad.GS2 replication, which could be augmented by coculture with MBT-2 cells or tumor-conditioned medium (TCM), suggesting that viral replication is increased when MSC-Ad.GS2 migrates to tumor sites. MBT-2 cells and TCM enhanced viral replication in Ad.GS2-infected MSCs. SDF-1 is a stem cell homing factor. Our results suggest that the SDF-1/STAT3/TERT signaling axis in MSCs in response to the tumor microenvironment may contribute to the enhanced replication of Ad.GS2 carried by MSCs. Notably, we demonstrate the potent therapeutic efficacy of systemically delivered MSC-Ad.GS2 in pleural disseminated tumor and experimental metastasis models using intrapleural and tail vein injection of MBT-2 cells, respectively. Treatment with MSC-Ad.GS2 significantly reduced tumor growth and prolonged the survival of mice bearing metastatic bladder tumors. Since telomerase is expressed in a broad spectrum of cancers, this therapeutic strategy may be broadly applicable.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"738-749"},"PeriodicalIF":5.4,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328937/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141306872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Therapeutic potential of extracellular vesicles derived from human amniotic epithelial cells for perinatal cerebral and pulmonary injury.","authors":"Naveen Kumar, Hamid Reza Bidkhori, Tamara Yawno, Rebecca Lim, Ishmael Miguel Inocencio","doi":"10.1093/stcltm/szae037","DOIUrl":"10.1093/stcltm/szae037","url":null,"abstract":"<p><p>Lung and brain injury that occurs during the perinatal period leads to lifelong disability and is often driven and/or exacerbated by inflammation. Human amniotic epithelial cells (hAEC), which demonstrate immunomodulatory, anti-fibrotic, and regenerative capabilities, are being explored as a therapeutic candidate for perinatal injury. However, limitations regarding scalable manufacturing, storage, transport, and dose-related toxicity have impeded clinical translation. Isolated therapeutic extracellular vesicles (EVs) from stem and stem-like cells are thought to be key paracrine mediators of therapeutic efficacy. The unique characteristics of EVs suggest that they potentially circumvent the limitations of traditional cell-based therapies. However, given the novelty of EVs as a therapeutic, recommendations around ideal methods of production, isolation, storage, and delivery have not yet been created by regulatory agencies. In this concise review, we discuss the pertinence and limitations of cell-based therapeutics in perinatal medicine. We also review the preclinical evidence supporting the use of therapeutic EVs for perinatal therapy. Further, we summarize the arising considerations regarding adequate cell source, biodistribution, isolation and storage methods, and regulatory roadblocks for the development of therapeutic EVs.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"711-723"},"PeriodicalIF":5.4,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328935/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ana Belén Carrillo-Gálvez, Federico Zurita, José Antonio Guerra-Valverde, Araceli Aguilar-González, Darío Abril-García, Miguel Padial-Molina, Allinson Olaechea, Natividad Martín-Morales, Francisco Martín, Francisco O'Valle, Pablo Galindo- Moreno
{"title":"NLRP3 and AIM2 inflammasomes expression is modified by LPS and titanium ions increasing the release of active IL-1β in alveolar bone-derived MSCs.","authors":"Ana Belén Carrillo-Gálvez, Federico Zurita, José Antonio Guerra-Valverde, Araceli Aguilar-González, Darío Abril-García, Miguel Padial-Molina, Allinson Olaechea, Natividad Martín-Morales, Francisco Martín, Francisco O'Valle, Pablo Galindo- Moreno","doi":"10.1093/stcltm/szae042","DOIUrl":"10.1093/stcltm/szae042","url":null,"abstract":"<p><p>Periodontitis and peri-implantitis are inflammatory diseases of infectious etiology that lead to the destruction of the supporting tissues located around teeth or implants. Although both pathologies share several characteristics, it is also known that they show important differences which could be due to the release of particles and metal ions from the implant surface. The activation of the inflammasome pathway is one of the main triggers of the inflammatory process. The inflammatory process in patients who suffer periodontitis or peri-implantitis has been mainly studied on cells of the immune system; however, it is also important to consider other cell types with high relevance in the regulation of the inflammatory response. In that context, mesenchymal stromal cells (MSCs) play an essential role in the regulation of inflammation due to their ability to modulate the immune response. This study shows that the induction of NLRP3 and absent in melanoma 2 (AIM2) inflammasome pathways mediated by bacterial components increases the secretion of active IL-1β and the pyroptotic process on human alveolar bone-derived mesenchymal stromal cells (hABSCs). Interestingly, when bacterial components are combined with titanium ions, NLRP3 expression is further increased while AIM2 expression is reduced. Furthermore, decrease of NLRP3 or AIM2 expression in hABSCs partially reverses the negative effect observed on the progression of the inflammatory process as well as on cell survival. In summary, our data suggest that the progression of the inflammatory process in peri-implantitis could be more acute due to the combined action of organic and inorganic components.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"826-841"},"PeriodicalIF":5.4,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328940/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pei-Hsun Sung, Tsung-Cheng Yin, John Y Chiang, Chih-Hung Chen, Chi-Ruei Huang, Mel S Lee, Hon-Kan Yip
{"title":"Synergic effect of combined xenogeneic mesenchymal stem cells and ceftriaxone on acute septic arthritis.","authors":"Pei-Hsun Sung, Tsung-Cheng Yin, John Y Chiang, Chih-Hung Chen, Chi-Ruei Huang, Mel S Lee, Hon-Kan Yip","doi":"10.1093/stcltm/szae034","DOIUrl":"10.1093/stcltm/szae034","url":null,"abstract":"<p><strong>Background: </strong>This study tested the hypothesis that combined ceftriaxone (Cef) and human umbilical cord-derived mesenchymal stem cells (HUCDMSCs) was better than either therapy for alleviating acute septic arthritis (ASA).</p><p><strong>Methods and results: </strong>Adult-male C57BL/6 mice were categorized into control group (Clt), group A (ASA only), group B [ASA + Cef (5 mg/kg, IM per day, at days 2 to 16 after ASA induction)], group C [ASA + HUCDMSCs (5 × 105 per mice at days 2, 3, 4 after ASA induction)], and group D (ASA + Cef + HUCDMSCs). Animals were euthanized by day 28. The result demonstrated that the body weight was significantly lower, whereas the ratio of kidney or spleen weight to WB, circulatory WBC count, bacterial colony-formation-unit from circulatory/kidney extraction were significantly higher in group A than in other groups (all P < .001). The proinflammatory cytokines (IL-6/TNF-α) of knee joint fluid were lowest in Clt and significantly and progressively reduced from groups A to D, whereas the circulatory levels of these 2 parameters at the time points of days 3/7/28 exhibited an identical pattern as knee joint fluid among the groups (all P-value < .0001). The scores of vertebral-bone destructions/inflamed synovium were lowest in Clt, highest in group A, significantly higher in group C than in groups B/D, and significantly higher in group C than in group D (all P < .0001).</p><p><strong>Conclusion: </strong>Combined antibiotics and Cef and HUCDMSCs was superior to just one therapy for suppressing circulatory and tissue levels of inflammation and knee joint destruction in ASA.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"724-737"},"PeriodicalIF":5.4,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328939/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of human umbilical cord mesenchymal stem cell-derived exosomes in the rat osteoarthritis models.","authors":"Huanfeng Yang, Yiqin Zhou, Bi Ying, Xuhui Dong, Qirong Qian, Shaorong Gao","doi":"10.1093/stcltm/szae031","DOIUrl":"10.1093/stcltm/szae031","url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) offer great potential for treatment of osteoarthritis (OA) by promoting articular cartilage regeneration via paracrine secretion of exosomes; however, the underlying mechanisms are not fully understood. This study aimed to explore the therapeutic effects of exosomes secreted by human umbilical cord-derived MSCs (hUC-MSCs) in rat models of OA and reveal the underlying mechanisms. UC-MSCs and UC-MSC-exosomes were prepared and identified by transmission electron microscopy and flow cytometry. IL-1β-induced OA chondrocytes and the operation and collagenase-induced OA rat models were established. The results of micro-computed tomography, histology, and immunohistochemistry showed that UC-MSC-exosomes promoted cartilage regeneration in OA rats. ELISA results showed that the levels of synovial fluid cytokines, TNF-α, IL-1β, and IL-6, were lower in exosome therapy group than control group in both OA rat models. Exosome treatment significantly downregulated the expression of MMP-13 and ADAMTS-5 in chondrocytes stimulated by IL-1β, and upregulated collagen II expression. These findings suggest that hUC-MSC-exosomes offer a promising option for the therapy for OA.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"803-811"},"PeriodicalIF":5.4,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141447136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seul-Gi Lee, Jooeon Rhee, Jin Seok, Jin Kim, Min Woo Kim, Gyeong-Eun Song, Shinhye Park, Kyu Sik Jeong, Suemin Lee, Yun Hyeong Lee, Youngin Jeong, C-Yoon Kim, Hyung Min Chung
{"title":"Promotion of maturation of human pluripotent stem cell-derived cardiomyocytes via treatment with the peroxisome proliferator-activated receptor alpha agonist Fenofibrate.","authors":"Seul-Gi Lee, Jooeon Rhee, Jin Seok, Jin Kim, Min Woo Kim, Gyeong-Eun Song, Shinhye Park, Kyu Sik Jeong, Suemin Lee, Yun Hyeong Lee, Youngin Jeong, C-Yoon Kim, Hyung Min Chung","doi":"10.1093/stcltm/szae029","DOIUrl":"10.1093/stcltm/szae029","url":null,"abstract":"<p><p>As research on in vitro cardiotoxicity assessment and cardiac disease modeling becomes more important, the demand for human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is increasing. However, it has been reported that differentiated hPSC-CMs are in a physiologically immature state compared to in vivo adult CMs. Since immaturity of hPSC-CMs can lead to poor drug response and loss of acquired heart disease modeling, various approaches have been attempted to promote maturation of CMs. Here, we confirm that peroxisome proliferator-activated receptor alpha (PPARα), one of the representative mechanisms of CM metabolism and cardioprotective effect also affects maturation of CMs. To upregulate PPARα expression, we treated hPSC-CMs with fenofibrate (Feno), a PPARα agonist used in clinical hyperlipidemia treatment, and demonstrated that the structure, mitochondria-mediated metabolism, and electrophysiology-based functions of hPSC-CMs were all mature. Furthermore, as a result of multi electrode array (MEA)-based cardiotoxicity evaluation between control and Feno groups according to treatment with arrhythmia-inducing drugs, drug response was similar in a dose-dependent manner. However, main parameters such as field potential duration, beat period, and spike amplitude were different between the 2 groups. Overall, these results emphasize that applying matured hPSC-CMs to the field of preclinical cardiotoxicity evaluation, which has become an essential procedure for new drug development, is necessary.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"750-762"},"PeriodicalIF":5.4,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328931/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Xing, Zhao Li, Jiajia Xu, Austin Z Chen, Mary Archer, Yiyun Wang, Mingxin Xu, Ziyi Wang, Manyu Zhu, Qizhi Qin, Neelima Thottappillil, Myles Zhou, Aaron W James
{"title":"Requirement of Pdgfrα+ cells for calvarial bone repair.","authors":"Xin Xing, Zhao Li, Jiajia Xu, Austin Z Chen, Mary Archer, Yiyun Wang, Mingxin Xu, Ziyi Wang, Manyu Zhu, Qizhi Qin, Neelima Thottappillil, Myles Zhou, Aaron W James","doi":"10.1093/stcltm/szae041","DOIUrl":"10.1093/stcltm/szae041","url":null,"abstract":"<p><p>Platelet-derived growth factor receptor α (PDGFRα) is often considered as a general marker of mesenchymal cells and fibroblasts, but also shows expression in a portion of osteoprogenitor cells. Within the skeleton, Pdgfrα+ mesenchymal cells have been identified in bone marrow and periosteum of long bones, where they play a crucial role in participating in fracture repair. A similar examination of Pdgfrα+ cells in calvarial bone healing has not been examined. Here, we utilize Pdgfrα-CreERTM;mT/mG reporter animals to examine the contribution of Pdgfrα+ mesenchymal cells to calvarial bone repair through histology and single-cell RNA sequencing (scRNA-Seq). Results showed that Pdgfrα+ mesenchymal cells are present in several cell clusters by scRNA-Seq, and by histology a dramatic increase in Pdgfrα+ cells populated the defect site at early timepoints to give rise to healed bone tissue overtime. Notably, diphtheria toxin-mediated ablation of Pdgfrα reporter+ cells resulted in significantly impaired calvarial bone healing. Our findings suggest that Pdgfrα-expressing cells within the calvarial niche play a critical role in the process of calvarial bone repair.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"791-802"},"PeriodicalIF":5.4,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328938/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Li, Yi Li, Chao Liu, Xinyi Yu, Ziqi Gan, Lusai Xiang, Jinxuan Zheng, Bowen Meng, Rongcheng Yu, Xin Chen, Xiaoxing Kou, Yang Cao, Tingting Ai
{"title":"Mechanical force-activated CD109 on periodontal ligament stem cells governs osteogenesis and osteoclast to promote alveolar bone remodeling.","authors":"Yang Li, Yi Li, Chao Liu, Xinyi Yu, Ziqi Gan, Lusai Xiang, Jinxuan Zheng, Bowen Meng, Rongcheng Yu, Xin Chen, Xiaoxing Kou, Yang Cao, Tingting Ai","doi":"10.1093/stcltm/szae035","DOIUrl":"10.1093/stcltm/szae035","url":null,"abstract":"<p><p>Mechanical force-mediated bone remodeling is crucial for various physiological and pathological processes involving multiple factors, including stem cells and the immune response. However, it remains unclear how stem cells respond to mechanical stimuli to modulate the immune microenvironment and subsequent bone remodeling. Here, we found that mechanical force induced increased expression of CD109 on periodontal ligament stem cells (PDLSCs) in vitro and in periodontal tissues from the force-induced tooth movement rat model in vivo, accompanied by activated alveolar bone remodeling. Under mechanical force stimulation, CD109 suppressed the osteogenesis capacity of PDLSCs through the JAK/STAT3 signaling pathway, whereas it promoted PDLSC-induced osteoclast formation and M1 macrophage polarization through paracrine. Moreover, inhibition of CD109 in vivo by lentivirus-shRNA injection increased the osteogenic activity and bone density in periodontal tissues. On the contrary, it led to decreased osteoclast numbers and pro-inflammatory factor secretion in periodontal tissues and reduced tooth movement. Mechanistically, mechanical force-enhanced CD109 expression via the repression of miR-340-5p. Our findings uncover a CD109-mediated mechanical force response machinery on PDLSCs, which contributes to regulating the immune microenvironment and alveolar bone remodeling during tooth movement.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"812-825"},"PeriodicalIF":5.4,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328932/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}