{"title":"Exosomes containing miR-148a-3p derived from mesenchymal stem cells suppress epithelial-mesenchymal transition in lens epithelial cells.","authors":"Jingyu Ma, Qihang Sun, Yijia Chen, Jinyan Li, Shuyi Chen, Lixia Luo","doi":"10.1093/stcltm/szae091","DOIUrl":null,"url":null,"abstract":"<p><p>Epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) is responsible for the development of fibrotic cataracts, which contribute to severe visual impairment. Recent evidence has shown that mesenchymal stem cell-derived exosomes (MSC-Exo) can attenuate EMT in several tissues. However, the effect of MSC-Exo on EMT in LECs (LECs-EMT) has not been determined. In this study, we isolated exosomes from human umbilical cord MSCs (hucMSC-Exo) and evaluated their effect on LECs-EMT both in vitro and in vivo. HucMSC-Exo application significantly suppressed the expression of mesenchymal cell-associated genes while increasing the expression of epithelial cell-associated genes. Cell proliferation and migration of LECs undergoing EMT were inhibited after hucMSC-Exo treatment. The volume of EMT plaques in mice with injury-induced anterior subcapsular cataract (ASC) was significantly reduced in the hucMSC-Exo-treated group. Furthermore, miR-148a-3p was abundant in hucMSC-Exo. After transfection with miR-148a-3p inhibitor, the anti-fibrotic effect of hucMSC-Exo was attenuated in LECs-EMT. A dual-luciferase reporter assay identified PRNP as a direct target gene of miR-148a-3p. Furthermore, we verified that hucMSC-Exo inhibited LECs-EMT through the miR-148a-3p/PRNP axis and the potential downstream ERK signaling pathway. Taken together, our work reveals the inhibitory effect of hucMSC-Exo on LECs-EMT and the underlying mechanism involved, which may provide potential therapeutic options for fibrotic cataracts.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":"14 2","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878568/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stcltm/szae091","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) is responsible for the development of fibrotic cataracts, which contribute to severe visual impairment. Recent evidence has shown that mesenchymal stem cell-derived exosomes (MSC-Exo) can attenuate EMT in several tissues. However, the effect of MSC-Exo on EMT in LECs (LECs-EMT) has not been determined. In this study, we isolated exosomes from human umbilical cord MSCs (hucMSC-Exo) and evaluated their effect on LECs-EMT both in vitro and in vivo. HucMSC-Exo application significantly suppressed the expression of mesenchymal cell-associated genes while increasing the expression of epithelial cell-associated genes. Cell proliferation and migration of LECs undergoing EMT were inhibited after hucMSC-Exo treatment. The volume of EMT plaques in mice with injury-induced anterior subcapsular cataract (ASC) was significantly reduced in the hucMSC-Exo-treated group. Furthermore, miR-148a-3p was abundant in hucMSC-Exo. After transfection with miR-148a-3p inhibitor, the anti-fibrotic effect of hucMSC-Exo was attenuated in LECs-EMT. A dual-luciferase reporter assay identified PRNP as a direct target gene of miR-148a-3p. Furthermore, we verified that hucMSC-Exo inhibited LECs-EMT through the miR-148a-3p/PRNP axis and the potential downstream ERK signaling pathway. Taken together, our work reveals the inhibitory effect of hucMSC-Exo on LECs-EMT and the underlying mechanism involved, which may provide potential therapeutic options for fibrotic cataracts.
期刊介绍:
STEM CELLS Translational Medicine is a monthly, peer-reviewed, largely online, open access journal.
STEM CELLS Translational Medicine works to advance the utilization of cells for clinical therapy. By bridging stem cell molecular and biological research and helping speed translations of emerging lab discoveries into clinical trials, STEM CELLS Translational Medicine will help move applications of these critical investigations closer to accepted best patient practices and ultimately improve outcomes.
The journal encourages original research articles and concise reviews describing laboratory investigations of stem cells, including their characterization and manipulation, and the translation of their clinical aspects of from the bench to patient care. STEM CELLS Translational Medicine covers all aspects of translational cell studies, including bench research, first-in-human case studies, and relevant clinical trials.