Amin Cressman, Bryan Le, David Morales, Won-Shin Yen, Fang-Ju Wu, Nicholas H Perotti, Brian Fury, Jan A Nolta, Fernando A Fierro
{"title":"Investigational New Drug-enabling studies to use genetically modified mesenchymal stromal cells in patients with critical limb ischemia.","authors":"Amin Cressman, Bryan Le, David Morales, Won-Shin Yen, Fang-Ju Wu, Nicholas H Perotti, Brian Fury, Jan A Nolta, Fernando A Fierro","doi":"10.1093/stcltm/szae094","DOIUrl":null,"url":null,"abstract":"<p><p>Mesenchymal stromal cells (MSCs) have been tested in multiple clinical trials to treat peripheral artery disease, especially the more severe form called critical limb ischemia. However, MSCs have often not met the expected efficacy endpoints. We developed a more potent therapeutic by genetically modifying MSCs to overexpress Vascular Endothelial Growth Factor (VEGF-A165). Here, we report preclinical studies submitted to the Food and Drug Administration (FDA) as part of our Investigational New Drug submission package. In vitro studies included the characterization of cell banks, transcriptome and secretome analysis, and in vitro potency assays. In vivo studies using immune-deficient NSG mice include dose-finding efficacy studies using a Matrigel plug model, cell retention studies, measurements of circulating VEGF, and toxicology studies to rule out severe adverse events. Our results suggest both the safety and efficacy of MSC/VEGF and support a first-in-human clinical trial to test this new combined cell/gene therapy.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":"14 2","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878639/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stcltm/szae094","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Mesenchymal stromal cells (MSCs) have been tested in multiple clinical trials to treat peripheral artery disease, especially the more severe form called critical limb ischemia. However, MSCs have often not met the expected efficacy endpoints. We developed a more potent therapeutic by genetically modifying MSCs to overexpress Vascular Endothelial Growth Factor (VEGF-A165). Here, we report preclinical studies submitted to the Food and Drug Administration (FDA) as part of our Investigational New Drug submission package. In vitro studies included the characterization of cell banks, transcriptome and secretome analysis, and in vitro potency assays. In vivo studies using immune-deficient NSG mice include dose-finding efficacy studies using a Matrigel plug model, cell retention studies, measurements of circulating VEGF, and toxicology studies to rule out severe adverse events. Our results suggest both the safety and efficacy of MSC/VEGF and support a first-in-human clinical trial to test this new combined cell/gene therapy.
期刊介绍:
STEM CELLS Translational Medicine is a monthly, peer-reviewed, largely online, open access journal.
STEM CELLS Translational Medicine works to advance the utilization of cells for clinical therapy. By bridging stem cell molecular and biological research and helping speed translations of emerging lab discoveries into clinical trials, STEM CELLS Translational Medicine will help move applications of these critical investigations closer to accepted best patient practices and ultimately improve outcomes.
The journal encourages original research articles and concise reviews describing laboratory investigations of stem cells, including their characterization and manipulation, and the translation of their clinical aspects of from the bench to patient care. STEM CELLS Translational Medicine covers all aspects of translational cell studies, including bench research, first-in-human case studies, and relevant clinical trials.