Stem Cells Translational Medicine最新文献

筛选
英文 中文
Menthol, a consumer product additive, adversely affects human embryonic stem cells via activation of TRPM8 and TRPA1 channels. 薄荷醇是一种消费品添加剂,通过激活TRPM8和TRPA1通道对人类胚胎干细胞产生不利影响。
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2025-03-18 DOI: 10.1093/stcltm/szae099
Shabnam Etemadi, Prue Talbot
{"title":"Menthol, a consumer product additive, adversely affects human embryonic stem cells via activation of TRPM8 and TRPA1 channels.","authors":"Shabnam Etemadi, Prue Talbot","doi":"10.1093/stcltm/szae099","DOIUrl":"10.1093/stcltm/szae099","url":null,"abstract":"<p><p>Many electronic cigarettes (ECs) contain high concentrations of menthol. The effect of menthol on human embryos in pregnant women who vape is not well understood. Human embryonic stem cells (hESCs) (an epiblast model) were used to test the hypothesis that 6.4-640 nM and 19.2-192 µM menthol, which activates TRP (transient-receptor-potential) channels, alters calcium homeostasis in embryos and adversely affects processes that are critical to gastrulation. Micromolar concentrations of menthol inhibited mitochondrial reductase activity in hESCs, an effect that was blocked by TRPA1 and TRPM8 inhibitors. Pulsatile exposure to menthol elevated intracellular calcium primarily by activating TRPA1 channels at nanomolar concentrations and TRPM8 channels at µM concentrations. nM menthol significantly inhibited colony growth by activating TRPA1 channels, while both TRPA1 and TRPM8 were activated by µM menthol. Inhibition of colony growth was attributed to cell death induced by menthol activation of TRPA1 and TRPM8 channels. nM menthol altered colony phenotype by increasing the major/minor axis ratio via TRPA1 and TRPM8 channels. Both nM and µM menthol induced alterations in hESC colony motility, an effect that was blocked only by the TRPM8 inhibitor. The menthol-induced increase in intracellular calcium adversely influenced growth, death, and migration, processes that are critical in gastrulation. Menthol concentrations that reach embryos in women who vape are high enough to activate TRPA1 and TRPM8 channels and perturbed calcium homeostasis. Pregnant women who vape likely expose their embryos to menthol concentrations that are harmful. These data could help prevent birth defects or embryo/fetal death.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":"14 3","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943479/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143731605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent studies of the effects of microgravity on cancer cells and the development of 3D multicellular cancer spheroids. 微重力对癌细胞的影响和三维多细胞癌球体的发展的最新研究。
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2025-03-18 DOI: 10.1093/stcltm/szaf008
Daniela Grimm, Thomas J Corydon, Jayashree Sahana, Luis Fernando González-Torres, Armin Kraus, Shannon Marchal, Petra M Wise, Ulf Simonsen, Marcus Krüger
{"title":"Recent studies of the effects of microgravity on cancer cells and the development of 3D multicellular cancer spheroids.","authors":"Daniela Grimm, Thomas J Corydon, Jayashree Sahana, Luis Fernando González-Torres, Armin Kraus, Shannon Marchal, Petra M Wise, Ulf Simonsen, Marcus Krüger","doi":"10.1093/stcltm/szaf008","DOIUrl":"10.1093/stcltm/szaf008","url":null,"abstract":"<p><p>The still young and developing space age, characterized by lunar and Martian exploration and the vision of extraterrestrial settlements, presents a unique environment to study the impact of microgravity (µg) on human physiology and disease development. Cancer research is currently a key focus of international space science, as µg fundamentally impacts cellular processes like differentiation, adhesion, migration, proliferation, survival, cell death, or growth of cancer cells as well as the cytoskeleton and the extracellular matrix (ECM). By creating three-dimensional (3D) tumor models in a µg-environment, like multicellular spheroids (MCS), researchers can expedite drug discovery and development, reducing the need for animal testing. This concise review analyses the latest knowledge on the influence of µg on cancer cells and MCS formation. We will focus on cells from brain tumors, lung, breast, thyroid, prostate, gastrointestinal, and skin cancer exposed to real (r-) and simulated (s-) µg-conditions.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":"14 3","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914975/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143658722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current perspectives on the dynamic culture of mesenchymal stromal/stem cell spheroids. 间充质间质/干细胞球体动态培养的最新研究进展。
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2025-03-18 DOI: 10.1093/stcltm/szae093
Yumi Ohori-Morita, Amal Ashry, Kunimichi Niibe, Hiroshi Egusa
{"title":"Current perspectives on the dynamic culture of mesenchymal stromal/stem cell spheroids.","authors":"Yumi Ohori-Morita, Amal Ashry, Kunimichi Niibe, Hiroshi Egusa","doi":"10.1093/stcltm/szae093","DOIUrl":"10.1093/stcltm/szae093","url":null,"abstract":"<p><p>Mesenchymal stromal/stem cells (MSCs) are promising candidates for regenerative medicine owing to their self-renewal properties, multilineage differentiation, immunomodulatory effects, and angiogenic potential. MSC spheroids fabricated by 3D culture have recently shown enhanced therapeutic potential. MSC spheroids create a specialized niche with tight cell-cell and cell-extracellular matrix interactions, optimizing their cellular function by mimicking the in vivo environment. Methods for 3D cultivation of MSCs can be classified into 2 main forms: static suspension culture and dynamic suspension culture. Numerous studies have reported the beneficial influence of these methods on MSCs, which is displayed by increased differentiation, angiogenic, immunomodulatory, and anti-apoptotic effects, and stemness of MSC spheroids. Particularly, recent studies highlighted the benefits of dynamic suspension cultures of the MSC spheroids in terms of faster and more compact spheroid formation and the long-term maintenance of stemness properties. However, only a few studies have compared the behavior of MSC spheroids formed using static and dynamic suspension cultures, considering the significant differences between their culture conditions. This review summarizes the differences between static and dynamic suspension culture methods and discusses the biological outcomes of MSC spheroids reported in the literature. In particular, we highlight the advantages of the dynamic suspension culture of MSC spheroids and contemplate its future applications for various diseases.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954588/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142907710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical roles of extracellular vesicles in periodontal disease and regeneration. 细胞外囊泡在牙周病和再生中的关键作用。
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2025-03-18 DOI: 10.1093/stcltm/szae092
Lin Jing, Hong-Yu Wang, Ning Zhang, Wen-Jie Zhang, Yuzhe Chen, Dao-Kun Deng, Xuan Li, Fa-Ming Chen, Xiao-Tao He
{"title":"Critical roles of extracellular vesicles in periodontal disease and regeneration.","authors":"Lin Jing, Hong-Yu Wang, Ning Zhang, Wen-Jie Zhang, Yuzhe Chen, Dao-Kun Deng, Xuan Li, Fa-Ming Chen, Xiao-Tao He","doi":"10.1093/stcltm/szae092","DOIUrl":"10.1093/stcltm/szae092","url":null,"abstract":"<p><p>Extracellular vesicles (EVs) are evolutionarily conserved communication mediators that play key roles in the development of periodontal disease as well as in regeneration processes. This concise review first outlines the pathogenic mechanisms through which EVs derived from bacteria lead to the progression of periodontitis, with a focus on the enrichment of virulence factors, the amplification of immune responses, and the induction of bone destruction as key aspects influenced by bacterial EVs. This review aims to elucidate the positive effects of EVs derived from mesenchymal stem cells (MSC-EVs) on periodontal tissue regeneration. In particular, the anti-inflammatory properties of MSC-EVs and their impact on the intricate interplay between MSCs and various immune cells, including macrophages, dendritic cells, and T cells, are described. Moreover, recent advancements regarding the repair-promoting functions of MSC-EVs are detailed, highlighting the mechanisms underlying their ability to promote osteogenesis, cementogenesis, angiogenesis, and the homing of stem cells, thus contributing significantly to periodontal tissue regeneration. Furthermore, this review provides insights into the therapeutic efficacy of MSC-EVs in treating periodontitis within a clinical context. By summarizing the current knowledge, this review aims to provide a comprehensive understanding of how MSC-EVs can be harnessed for the treatment of periodontal diseases. Finally, a discussion is presented on the challenges that lie ahead and the potential practical implications for translating EV-based therapies into clinical practices for the treatment of periodontitis.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954511/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142865180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of immune modulation strategies to enhance survival and integration of human neural progenitor cells in rodent models of spinal cord injury. 评估免疫调节策略以提高鼠类脊髓损伤模型中人类神经祖细胞的存活和整合。
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2025-02-11 DOI: 10.1093/stcltm/szae090
Zijian Lou, Alex Post, Narihito Nagoshi, James Hong, Nader Hejrati, Jonathon Chon Teng Chio, Mohamad Khazaei, Michael G Fehlings
{"title":"Assessment of immune modulation strategies to enhance survival and integration of human neural progenitor cells in rodent models of spinal cord injury.","authors":"Zijian Lou, Alex Post, Narihito Nagoshi, James Hong, Nader Hejrati, Jonathon Chon Teng Chio, Mohamad Khazaei, Michael G Fehlings","doi":"10.1093/stcltm/szae090","DOIUrl":"10.1093/stcltm/szae090","url":null,"abstract":"<p><p>Regenerative therapies are currently lacking for spinal cord injury (SCI). Neural progenitor cells (NPCs) have emerged as a promising therapeutic approach. To facilitate translation of NPCs into the clinic, studying human NPCs in rodent models is required. The preclinical study of human NPCs in rodent models of SCI necessitates an optimal selection of immunomodulatory strategies, requiring a balance between modulating the immune system and preserving its functionality.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":"14 2","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811735/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143391929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring cell therapies for diabetic metabolic phenotypes: a comparative study on the efficacy of various umbilical cord-derived cell regimens. 针对糖尿病代谢表型的定制细胞疗法:各种脐带衍生细胞方案疗效的比较研究。
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2025-02-11 DOI: 10.1093/stcltm/szae083
Lingshu Wang, Liming Wang, Falian He, Jia Song, Jingting Qiao, Jun Qin, Li Chen, Xinguo Hou
{"title":"Tailoring cell therapies for diabetic metabolic phenotypes: a comparative study on the efficacy of various umbilical cord-derived cell regimens.","authors":"Lingshu Wang, Liming Wang, Falian He, Jia Song, Jingting Qiao, Jun Qin, Li Chen, Xinguo Hou","doi":"10.1093/stcltm/szae083","DOIUrl":"10.1093/stcltm/szae083","url":null,"abstract":"<p><p>Given the high heterogeneity of type 2 diabetes mellitus (T2DM), it is imperative to develop personalized stem cell infusion regimen for targeted metabolic phenotype in order to ensure optimal therapeutic efficacy. In this study, we conducted a comparative analysis of 4 infusion regimens involving single and repeated infusions of human umbilical cord Wharton's jelly-derived MSCs (hucMSCs), single infusions of umbilical cord blood mononuclear cells (UCB), and sequential infusions of hucMSCs and UCB in T2DM rats. Results showed all 4 infusion regimens exhibited comparable efficacy in lowering fasting blood glucose levels and suppressing glucagon secretion. Single and double infusions of hucMSCs exhibited a tendency to migrate to the liver, thereby better at ameliorating hepatic glucose metabolism by enhancing glycogen synthesis and storage, promoting glycolysis, inhibiting gluconeogenesis, and improving insulin signal transduction. The sequential infusion of hucMSCs and UCB demonstrated specific cell tropism toward the pancreas, leading to prolonged glucose-lowering effects following a glucose tolerance test, restoration of early-phase insulin secretion, stimulation of islet beta cell proliferation and improvement in the beta/alpha ratio. Multiple injections, regardless of cell type, reduced the expression of systemic chronic inflammatory markers such as IL-1β, IL-6, IL-17, IL-22, and IFN-γ. Finally, a single dose of UCB exhibited a greater tendency to target visceral fat and enhanced effectiveness in regulating levels of total cholesterol and triglycerides. In conclusion, our study provided personalized stem cell regimens for diverse T2DM metabolic phenotypes, thereby offering improved treatment alternatives for future clinical trials and applications.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878779/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142669206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endostatin-expressing endometrial mesenchymal stem cells inhibit angiogenesis in endometriosis through the miRNA-21-5p/TIMP3/PI3K/Akt/mTOR pathway. 表达内ostatin的子宫内膜间充质干细胞通过miRNA-21-5p/TIMP3/PI3K/Akt/mTOR途径抑制子宫内膜异位症的血管生成
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2025-02-11 DOI: 10.1093/stcltm/szae079
Yan Cheng, Qiuyan Guo, Yulei Cheng, Dejun Wang, Liyuan Sun, Tian Liang, Jing Wang, Han Wu, Zhibin Peng, Guangmei Zhang
{"title":"Endostatin-expressing endometrial mesenchymal stem cells inhibit angiogenesis in endometriosis through the miRNA-21-5p/TIMP3/PI3K/Akt/mTOR pathway.","authors":"Yan Cheng, Qiuyan Guo, Yulei Cheng, Dejun Wang, Liyuan Sun, Tian Liang, Jing Wang, Han Wu, Zhibin Peng, Guangmei Zhang","doi":"10.1093/stcltm/szae079","DOIUrl":"10.1093/stcltm/szae079","url":null,"abstract":"<p><p>Endometriosis is a chronic inflammatory and neoangiogenic disease. Endostatin is one of the most effective inhibitors of angiogenesis. Mesenchymal stem cells (MSCs) have been investigated as compelling options for cell therapy. However, the effect and mechanism of action of endostatin-expressing endometrial MSCs (EMSCs) in endometriosis are unclear. Here, EMSCs were genetically modified to overexpress endostatin (EMSCs-Endo). A reduction in the angiogenic capacity of HUVECs was observed in vitro after treatment with EMSCs-Endo. EMSCs-Endo significantly suppressed endometriotic lesion growth in vivo. The limited efficacy was associated with suppressed angiogenesis. The miRNA-21-5p level and the levels of p-PI3K, p-mTOR, and p-Akt in HUVECs and mouse endometriotic lesions significantly decreased after treatment with EMSCs-Endo, whereas TIMP3 expression significantly increased. In summary, targeted gene therapy with EMSCs-Endo is feasible, and its efficacy in regulating endometriosis can be attributed to the inhibition of angiogenesis, suggesting that EMSCs could be used as promising vehicles for targeted gene therapy.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878778/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142717274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vivo bioengineered tooth formation using decellularized tooth bud extracellular matrix scaffolds. 使用脱细胞牙芽细胞外基质支架的体内生物工程牙齿形成。
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2025-02-11 DOI: 10.1093/stcltm/szae076
Weibo Zhang, Pamela C Yelick
{"title":"In vivo bioengineered tooth formation using decellularized tooth bud extracellular matrix scaffolds.","authors":"Weibo Zhang, Pamela C Yelick","doi":"10.1093/stcltm/szae076","DOIUrl":"10.1093/stcltm/szae076","url":null,"abstract":"<p><p>The use of dental implants to replace lost or damaged teeth has become increasingly widespread due to their reported high survival and success rates. In reality, the long-term survival of dental implants remains a health concern, based on their short-term predicted survival of ~15 years, significant potential for jawbone resorption, and risk of peri-implantitis. The ability to create functional bioengineered teeth, composed of living tissues with properties similar to those of natural teeth, would be a significant improvement over currently used synthetic titanium implants. To address this possibility, our research has focused on creating biological tooth substitutes. The study presented here validates a potentially clinically relevant bioengineered tooth replacement therapy for eventual use in humans. We created bioengineered tooth buds by seeding decellularized tooth bud (dTB) extracellular matrix (ECM) scaffolds with human dental pulp cells, porcine tooth bud-derived dental epithelial cells, and human umbilical vein endothelial cells. The resulting bioengineered tooth bud constructs were implanted in the mandibles of adult Yucatan minipigs and grown for 2 or 4 months. We observed the formation of tooth-like tissues, including tooth-supporting periodontal ligament tissues, in cell-seeded dTB ECM constructs. This preclinical translational study validates this approach as a potential clinically relevant alternative to currently used dental implants.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878782/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142898300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting chromatin modifying complexes in acute myeloid leukemia. 急性髓性白血病的靶向染色质修饰复合物。
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2025-02-11 DOI: 10.1093/stcltm/szae089
Alexandra Schurer, Shira G Glushakow-Smith, Kira Gritsman
{"title":"Targeting chromatin modifying complexes in acute myeloid leukemia.","authors":"Alexandra Schurer, Shira G Glushakow-Smith, Kira Gritsman","doi":"10.1093/stcltm/szae089","DOIUrl":"10.1093/stcltm/szae089","url":null,"abstract":"<p><p>Acute myeloid leukemia (AML) is a devastating hematologic malignancy with high rates of relapse, which can, in part, be attributed to the dysregulation of chromatin modifications. These epigenetic modifications can affect the capacity of hematopoietic cells to self-renew or differentiate, which can lead to transformation. Aberrant histone modifications contribute to the derepression of self-renewal genes such as HOXA/B and MEIS1 in committed hematopoietic progenitors, which is considered a key mechanism of leukemogenesis in MLL-rearranged (MLL-r) and NPM1-mutated AML. As regulators of some of the key histone modifications in this disease, the menin-KMT2A and polycomb repressive (PRC1/2) complexes have been identified as promising targets for the treatment of AML. This review explores recent discoveries of how leukemic cells hijack these complexes and their interactions with other chromatin regulators to promote disease progression. We also discuss inhibitors targeting these complexes that have demonstrated therapeutic efficacy in preclinical and clinical studies and propose novel therapeutic combinations targeting the KMT2A and PRC1/2 broader interacting networks to overcome issues of resistance to existing monotherapies.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878770/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exosomes containing miR-148a-3p derived from mesenchymal stem cells suppress epithelial-mesenchymal transition in lens epithelial cells. 来自间充质干细胞的含有miR-148a-3p的外泌体抑制晶状体上皮细胞的上皮-间充质转化。
IF 5.4 2区 医学
Stem Cells Translational Medicine Pub Date : 2025-02-11 DOI: 10.1093/stcltm/szae091
Jingyu Ma, Qihang Sun, Yijia Chen, Jinyan Li, Shuyi Chen, Lixia Luo
{"title":"Exosomes containing miR-148a-3p derived from mesenchymal stem cells suppress epithelial-mesenchymal transition in lens epithelial cells.","authors":"Jingyu Ma, Qihang Sun, Yijia Chen, Jinyan Li, Shuyi Chen, Lixia Luo","doi":"10.1093/stcltm/szae091","DOIUrl":"10.1093/stcltm/szae091","url":null,"abstract":"<p><p>Epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) is responsible for the development of fibrotic cataracts, which contribute to severe visual impairment. Recent evidence has shown that mesenchymal stem cell-derived exosomes (MSC-Exo) can attenuate EMT in several tissues. However, the effect of MSC-Exo on EMT in LECs (LECs-EMT) has not been determined. In this study, we isolated exosomes from human umbilical cord MSCs (hucMSC-Exo) and evaluated their effect on LECs-EMT both in vitro and in vivo. HucMSC-Exo application significantly suppressed the expression of mesenchymal cell-associated genes while increasing the expression of epithelial cell-associated genes. Cell proliferation and migration of LECs undergoing EMT were inhibited after hucMSC-Exo treatment. The volume of EMT plaques in mice with injury-induced anterior subcapsular cataract (ASC) was significantly reduced in the hucMSC-Exo-treated group. Furthermore, miR-148a-3p was abundant in hucMSC-Exo. After transfection with miR-148a-3p inhibitor, the anti-fibrotic effect of hucMSC-Exo was attenuated in LECs-EMT. A dual-luciferase reporter assay identified PRNP as a direct target gene of miR-148a-3p. Furthermore, we verified that hucMSC-Exo inhibited LECs-EMT through the miR-148a-3p/PRNP axis and the potential downstream ERK signaling pathway. Taken together, our work reveals the inhibitory effect of hucMSC-Exo on LECs-EMT and the underlying mechanism involved, which may provide potential therapeutic options for fibrotic cataracts.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":"14 2","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878568/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143557938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信