SpectroscopyPub Date : 2023-09-01DOI: 10.56530/spectroscopy.bu5978k6
Jerome Workman
{"title":"The 2023 Emerging Leader in Molecular Spectroscopy Award","authors":"Jerome Workman","doi":"10.56530/spectroscopy.bu5978k6","DOIUrl":"https://doi.org/10.56530/spectroscopy.bu5978k6","url":null,"abstract":"This year’s Emerging Leader in Molecular Spectroscopy Award recipient is Dmitry Kurouski, an assistant professor of chemistry at the Texas A&M University in College Station, Texas. From his early research days as a graduate student at State University of New York in Albany, Kurouski’s research has emphasized the development and application of innovative Raman spectroscopy methods for noninvasive, nondestructive analyses of biological materials.","PeriodicalId":21957,"journal":{"name":"Spectroscopy","volume":"77 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135248646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SpectroscopyPub Date : 2023-09-01DOI: 10.56530/spectroscopy.vo3774k1
Brian C. Smith
{"title":"Halogenated Organic Compounds","authors":"Brian C. Smith","doi":"10.56530/spectroscopy.vo3774k1","DOIUrl":"https://doi.org/10.56530/spectroscopy.vo3774k1","url":null,"abstract":"Almost all of the compounds whose spectra we have discussed so far in this column series have contained carbon, hydrogen, oxygen, and nitrogen only. However, there are a number of important compounds that contain other elements that are still considered organic, such as halogenated organics. In this column, we will discuss the spectra of halogenated compounds generally, then specifically discuss the spectra of some common halogenated polymers.","PeriodicalId":21957,"journal":{"name":"Spectroscopy","volume":"77 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135248647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SpectroscopyPub Date : 2023-09-01DOI: 10.56530/spectroscopy.vz5170l2
Ken Neubauer
{"title":"Using ICP-OES to Improve Lithium-Ion Battery Performance and Reduce Waste","authors":"Ken Neubauer","doi":"10.56530/spectroscopy.vz5170l2","DOIUrl":"https://doi.org/10.56530/spectroscopy.vz5170l2","url":null,"abstract":"As the demand grows for lithium-ion (Li-ion) batteries, their performance requirements and environmental impact increase. Battery performance strongly depends on the composition of the cathode materials, requiring precise elemental ratios. Meanwhile, disposing spent batteries can have a negative environmental impact, which can be greatly reduced through recycling. Inductively coupled plasma–optical emission spectroscopy (ICP-OES) provides solutions in both of these areas. By using high-precision ICP-OES, precise measurements can be made to accurately determine compositions of a variety of different cathode materials. In battery recycling, ICP-OES meets the requirements of being a multielement technique with a wide dynamic range and the ability to handle complex matrices. Therefore, it can measure both high-concentration and impurity elements resulting from the incineration of spent batteries, providing recycling facilities information about the elements present and their levels so that recoveries can be optimized.","PeriodicalId":21957,"journal":{"name":"Spectroscopy","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135394254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SpectroscopyPub Date : 2023-08-01DOI: 10.56530/spectroscopy.tw7684z4
Alireza Koochakzaei
{"title":"Determination of Sulfuric Acid Effects on Degradation and Structural Changes of Gelatin Using Fourier-Transform Infrared Spectroscopy and Peak Deconvolution Analysis","authors":"Alireza Koochakzaei","doi":"10.56530/spectroscopy.tw7684z4","DOIUrl":"https://doi.org/10.56530/spectroscopy.tw7684z4","url":null,"abstract":"The present research was aimed to investigate the effects of sulfuric acid on the structures of gelatin polypeptides. Gelatin samples were immersed in 0.5 M sulfuric acid solution for different periods of 15, 30, 60, 120, 240, 480, 960, and 1920 s, with possible structural changes analyzed by Fourier-transform infrared spectroscopy (FT-IR). Spectra at amide I and II regions were scrutinized using the Gaussian deconvolution method for the resulting changes in the protein secondary structure. The hydrolysis process initially led to a decrease in the α-helix chain and an increase in random coil and β-sheet structures. An equilibrium was formed in degradation and these structures were sequentially turned on each other. Results revealed a correlation between the peak intensity changes of these conformations, so that the degradation process could be observed in the conversion of α-helix to random coil and β-sheet structures and vice versa, indicating the oxidation and expansion of protein structure at the onset of the degradation process.","PeriodicalId":21957,"journal":{"name":"Spectroscopy","volume":"6 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79703616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SpectroscopyPub Date : 2023-08-01DOI: 10.56530/spectroscopy.je3877t4
J. Chasse
{"title":"New Analytical Tools for Biomedical Applications Using Machine Learning and Spectroscopy","authors":"J. Chasse","doi":"10.56530/spectroscopy.je3877t4","DOIUrl":"https://doi.org/10.56530/spectroscopy.je3877t4","url":null,"abstract":"","PeriodicalId":21957,"journal":{"name":"Spectroscopy","volume":"35 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89440940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SpectroscopyPub Date : 2023-08-01DOI: 10.56530/spectroscopy.ld6080l6
E. Mccurdy, Peter Riles
{"title":"Non-Specific Calibration Combined with Helium Collision Mode for Elemental Screening","authors":"E. Mccurdy, Peter Riles","doi":"10.56530/spectroscopy.ld6080l6","DOIUrl":"https://doi.org/10.56530/spectroscopy.ld6080l6","url":null,"abstract":"Elemental analysis labs often measure only a small number of elements; for example, the U.S. Food and Drug Administration (FDA) Elemental Analysis Manual (EAM) regulatory method for food analysis by inductively coupled plasma-mass spectrometry (ICP-MS) (EAM 4.7) specifies only 12 trace elements. ICP-MS is a fast, multielement technique that can measure nearly every element in the periodic table and cover a concentration range from ultratrace to major elements. While labs rarely need to quantify all 75 or so elements that ICP-MS can measure, they may benefit from acquiring a more complete picture of the total elemental content of each sample. The amount of useful information that can be extracted from the ICP-MS mass spectrum is dramatically increased when helium (He) collision mode is used to minimize common spectral overlaps. Some ICP-MS instruments can perform a fast, He mode screening acquisition for each sample, combined with non-specific calibration to give semiquantitative concentrations for “all elements”. He mode screening gives access to confirmatory isotopes and detects elements that were not included in the quantitative analysis, providing valuable additional insight into each sample’s composition.","PeriodicalId":21957,"journal":{"name":"Spectroscopy","volume":"51 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83307838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SpectroscopyPub Date : 2023-08-01DOI: 10.56530/spectroscopy.dx3267q6
Maopeng Li, Yande Liu, Jun Hu, Cheng Su, Zhen Xu, Huizhen Cui
{"title":"Detection of the Early Fungal Infection of Citrus by Fourier Transform Near-Infrared Spectra","authors":"Maopeng Li, Yande Liu, Jun Hu, Cheng Su, Zhen Xu, Huizhen Cui","doi":"10.56530/spectroscopy.dx3267q6","DOIUrl":"https://doi.org/10.56530/spectroscopy.dx3267q6","url":null,"abstract":"Early fungal infection of citrus is one of the common diseases found during the storage period of citrus, and fungus that infects citrus will spread to the entire batch of citrus as the degree of infection deepens, causing enormous economic losses. Therefore, early detection of fungal infection of citrus is fundamental. The purpose of this study is to explore the qualitative identification of early fungal infections in citrus by using Fourier transform near-infrared (FT-NIR) combined with a variety of chemometric methods. First, discrete wavelet transform (DWT) is used to filter the noise of the spectral signal, then combined with a PLS-DA model, that helps discriminate healthy from infected Citrus. Subsequently, four different feature variable selection methods were introduced, Then, the linear discriminant analysis (LDA) and support vector machine (SVM) two classifiers were combined to establish a qualitative model for the degree of fungal infection. The modeling results show that the SVM modeling effect is better than LDA, and the DWT-CARS-SVM based on the RBF kernel function has the best result, the accuracy rates of the training set and test set are 100% and 97%. The results indicate that FT-NIR spectroscopy, combined with chemometric methods, is able to distinguish early fungal infections in citrus.","PeriodicalId":21957,"journal":{"name":"Spectroscopy","volume":"11 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85097962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SpectroscopyPub Date : 2023-08-01DOI: 10.56530/spectroscopy.iq2368r9
T. Mayerhöfer, S. Pahlow, Juergen Popp
{"title":"Understanding the Limits of the Bouguer-Beer-Lambert Law","authors":"T. Mayerhöfer, S. Pahlow, Juergen Popp","doi":"10.56530/spectroscopy.iq2368r9","DOIUrl":"https://doi.org/10.56530/spectroscopy.iq2368r9","url":null,"abstract":"The Bouguer-Beer-Lambert law is frequently applied in spectroscopy and spectrophotometry. Often it is assumed that it accurately describes the observed changes induced by light-matter interactions and properly reflects the physical phenomena at play. For most cases, however, this is not true, and issues can arise when the Bouguer-Beer-Lambert law is applied uncritically. In this short article, we will comment on its fundamental limits and their physical background.","PeriodicalId":21957,"journal":{"name":"Spectroscopy","volume":"22 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73423405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SpectroscopyPub Date : 2023-08-01DOI: 10.56530/spectroscopy.tp5468m7
Agalya Palanisamy, Velusamy Veerappan
{"title":"Impact of pH and Sucralose on the Non-Covalent Interaction of Ovalbumin: FT-IR Analysis","authors":"Agalya Palanisamy, Velusamy Veerappan","doi":"10.56530/spectroscopy.tp5468m7","DOIUrl":"https://doi.org/10.56530/spectroscopy.tp5468m7","url":null,"abstract":"Analysis of pH and cosolvent effects on protein structure is a popular study in food biophysics research since the function of protein is primarily dependent on its structure. The structure-function relationship of protein could be well reflected in changes in non-covalent interactions of protein. In this aspect, the present work deals with the Fourier transform infrared (FT-IR) spectroscopy analysis of ovalbumin (OVA) in different pH conditions with and without cosolvent sucralose (SUC) inclusion. The FT-IR spectrum of proteins provides an absorption spectrum in the frequency region of 4000-400 cm-1. These absorption bands consist of amide A, amide B, and amide I to amide VII. The results are interpreted in terms of noncovalent interactions, such as van der Waals interactions, hydrogen bonds, and hydrophobic and electrostatic interactions. The obtained results indicate that OVA is denatured from its native state against pH and SUC inclusion.","PeriodicalId":21957,"journal":{"name":"Spectroscopy","volume":"13 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85216813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SpectroscopyPub Date : 2023-08-01DOI: 10.56530/spectroscopy.mj8589f4
Michael L. Myrick, Caitlyn M. English, Zechariah B Kitzhaber
{"title":"A Brief Look at Optical Diffuse Reflection (ODR) Spectroscopy","authors":"Michael L. Myrick, Caitlyn M. English, Zechariah B Kitzhaber","doi":"10.56530/spectroscopy.mj8589f4","DOIUrl":"https://doi.org/10.56530/spectroscopy.mj8589f4","url":null,"abstract":"In this short overview, we consider use cases for diffuse reflection spectroscopy and introduce the Kubelka-Munk diffuse reflectance formula. We conclude by comparing diffuse transmittance, diffuse reflectance, logarithmic transforms of both, and the Kubelka-Munk transform for mid-infrared spectroscopy of the same sample.","PeriodicalId":21957,"journal":{"name":"Spectroscopy","volume":"16 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87818000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}