Using ICP-OES to Improve Lithium-Ion Battery Performance and Reduce Waste

IF 0.8 4区 化学 Q4 SPECTROSCOPY
Ken Neubauer
{"title":"Using ICP-OES to Improve Lithium-Ion Battery Performance and Reduce Waste","authors":"Ken Neubauer","doi":"10.56530/spectroscopy.vz5170l2","DOIUrl":null,"url":null,"abstract":"As the demand grows for lithium-ion (Li-ion) batteries, their performance requirements and environmental impact increase. Battery performance strongly depends on the composition of the cathode materials, requiring precise elemental ratios. Meanwhile, disposing spent batteries can have a negative environmental impact, which can be greatly reduced through recycling. Inductively coupled plasma–optical emission spectroscopy (ICP-OES) provides solutions in both of these areas. By using high-precision ICP-OES, precise measurements can be made to accurately determine compositions of a variety of different cathode materials. In battery recycling, ICP-OES meets the requirements of being a multielement technique with a wide dynamic range and the ability to handle complex matrices. Therefore, it can measure both high-concentration and impurity elements resulting from the incineration of spent batteries, providing recycling facilities information about the elements present and their levels so that recoveries can be optimized.","PeriodicalId":21957,"journal":{"name":"Spectroscopy","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56530/spectroscopy.vz5170l2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

As the demand grows for lithium-ion (Li-ion) batteries, their performance requirements and environmental impact increase. Battery performance strongly depends on the composition of the cathode materials, requiring precise elemental ratios. Meanwhile, disposing spent batteries can have a negative environmental impact, which can be greatly reduced through recycling. Inductively coupled plasma–optical emission spectroscopy (ICP-OES) provides solutions in both of these areas. By using high-precision ICP-OES, precise measurements can be made to accurately determine compositions of a variety of different cathode materials. In battery recycling, ICP-OES meets the requirements of being a multielement technique with a wide dynamic range and the ability to handle complex matrices. Therefore, it can measure both high-concentration and impurity elements resulting from the incineration of spent batteries, providing recycling facilities information about the elements present and their levels so that recoveries can be optimized.
利用ICP-OES提高锂离子电池性能并减少浪费
随着锂离子电池需求的增长,其性能要求和对环境的影响也在增加。电池性能在很大程度上取决于正极材料的组成,需要精确的元素比例。同时,处理废旧电池会对环境产生负面影响,通过回收可以大大减少这种负面影响。电感耦合等离子体光学发射光谱(ICP-OES)为这两个领域提供了解决方案。通过使用高精度ICP-OES,可以进行精确的测量,以准确地确定各种不同阴极材料的组成。在电池回收中,ICP-OES符合多元素技术的要求,具有宽动态范围和处理复杂矩阵的能力。因此,它可以测量由废电池焚烧产生的高浓度和杂质元素,为回收设施提供有关存在元素及其水平的信息,以便优化回收。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Spectroscopy
Spectroscopy 物理-光谱学
CiteScore
1.10
自引率
0.00%
发文量
0
审稿时长
3 months
期刊介绍: Spectroscopy welcomes manuscripts that describe techniques and applications of all forms of spectroscopy and that are of immediate interest to users in industry, academia, and government.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信