Solid state nuclear magnetic resonance最新文献

筛选
英文 中文
New salts of teriflunomide (TFM) – Single crystal X-ray and solid state NMR investigation 新型特氟米特盐(TFM) -单晶x射线和固态核磁共振研究
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2022-12-01 DOI: 10.1016/j.ssnmr.2022.101820
Tomasz Pawlak , Piotr Paluch , Rafał Dolot , Grzegorz Bujacz , Marek J. Potrzebowski
{"title":"New salts of teriflunomide (TFM) – Single crystal X-ray and solid state NMR investigation","authors":"Tomasz Pawlak ,&nbsp;Piotr Paluch ,&nbsp;Rafał Dolot ,&nbsp;Grzegorz Bujacz ,&nbsp;Marek J. Potrzebowski","doi":"10.1016/j.ssnmr.2022.101820","DOIUrl":"10.1016/j.ssnmr.2022.101820","url":null,"abstract":"<div><p>New salts of teriflunomide <strong>TFM</strong> (drug approved for Multiple Sclerosis treatment) with inorganic counterions: lithium (<strong>TFM_Li)</strong>, sodium (<strong>TFM_Na)</strong>, potassium (<strong>TFM_K)</strong>, rubidium (<strong>TFM_Rb)</strong>, caesium (<strong>TFM_Cs)</strong> and ammonium (<strong>TFM_NH</strong><sub><strong>4</strong></sub><strong>)</strong> were prepared and investigated employing solid state NMR Spectroscopy, Powder X-ray Diffraction PXRD and Single Crystal X-ray Diffraction (SC XRD). Crystal and molecular structures of three salts: <strong>TFM_Na</strong> (CCDC: 2173257), <strong>TFM_Cs</strong> (CCDC: 2165288) and <strong>TFM_NH</strong><sub><strong>4</strong></sub> (CCDC: 2165281) were determined and deposited. Compared to the native <strong>TFM</strong>, for all crystalline salt structures, a conformational change of the teriflunomide molecule involving about 180-degree rotation of the end group, forming an intramolecular hydrogen bond N–H⋯O is observed. By applying a complementary multi-technique approach, employing 1D and 2D solid state MAS NMR techniques, single and powder X-ray diffraction measurements, as well as the DFT-based GIPAW calculations of NMR chemical shifts for <strong>TFM_Na</strong> and <strong>TFM_Cs</strong> allowed to propose structural features of <strong>TFM_Li</strong> for which it was not possible to obtain adequate material for single crystal X-Ray measurement.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"122 ","pages":"Article 101820"},"PeriodicalIF":3.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0926204022000492/pdfft?md5=b5f36b38b63761d08c402a715bb94fef&pid=1-s2.0-S0926204022000492-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10685599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interaction frames in solid-state NMR: A case study for chemical-shift-selective irradiation schemes 固态核磁共振中的相互作用框架:化学偏移选择性辐照方案的案例研究
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2022-12-01 DOI: 10.1016/j.ssnmr.2022.101834
Matías Chávez, Matthias Ernst
{"title":"Interaction frames in solid-state NMR: A case study for chemical-shift-selective irradiation schemes","authors":"Matías Chávez,&nbsp;Matthias Ernst","doi":"10.1016/j.ssnmr.2022.101834","DOIUrl":"10.1016/j.ssnmr.2022.101834","url":null,"abstract":"<div><p>Interaction frames play an important role in describing and understanding experimental schemes in magnetic resonance. They are often used to eliminate dominating parts of the spin Hamiltonian, e.g., the Zeeman Hamiltonian in the usual (Zeeman) rotating frame, or the radio-frequency-field (rf) Hamiltonian to describe the efficiency of decoupling or recoupling sequences. Going into an interaction frame can also make parts of a time-dependent Hamiltonian time independent like the rf-field Hamiltonian in the usual (Zeeman) rotating frame. Eliminating the dominant term often allows a better understanding of the details of the spin dynamics. Going into an interaction frame can also reduces the energy-level splitting in the Hamiltonian leading to a faster convergence of perturbation expansions, average Hamiltonian, or Floquet theory. Often, there is no obvious choice of the interaction frame to use but some can be more convenient than others. Using the example of frequency-selective dipolar recoupling, we discuss the differences, advantages, and disadvantages of different choices of interaction frames. They always include the complete radio-frequency Hamiltonian but can also contain the chemical shifts of the spins and may or may not contain the effective fields over one cycle of the pulse sequence.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"122 ","pages":"Article 101834"},"PeriodicalIF":3.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0926204022000637/pdfft?md5=34c8cd6a39dc8784f9deca371b37fc6d&pid=1-s2.0-S0926204022000637-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10341544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Monitoring the influence of additives on the crystallization processes of glycine with dynamic nuclear polarization solid-state NMR 动态核极化固体核磁共振监测添加剂对甘氨酸结晶过程的影响
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2022-12-01 DOI: 10.1016/j.ssnmr.2022.101836
Marie Juramy , Paolo Cerreia Vioglio , Fabio Ziarelli , Stéphane Viel , Pierre Thureau , Giulia Mollica
{"title":"Monitoring the influence of additives on the crystallization processes of glycine with dynamic nuclear polarization solid-state NMR","authors":"Marie Juramy ,&nbsp;Paolo Cerreia Vioglio ,&nbsp;Fabio Ziarelli ,&nbsp;Stéphane Viel ,&nbsp;Pierre Thureau ,&nbsp;Giulia Mollica","doi":"10.1016/j.ssnmr.2022.101836","DOIUrl":"10.1016/j.ssnmr.2022.101836","url":null,"abstract":"<div><p>Crystallization is fundamental in many domains, and the investigation of the sequence of solid phases produced as a function of crystallization time is thus key to understand and control crystallization processes. Here, we used a solid-state nuclear magnetic resonance strategy to monitor the crystallization process of glycine, which is a model compound in polymorphism, under the influence of crystallizing additives, such as methanol or sodium chloride. More specifically, our strategy is based on a combination of low-temperatures and dynamic nuclear polarization (DNP) to trap and detect transient crystallizing forms, which may be present only in low quantities. Interestingly, our results show that these additives yield valuable DNP signal enhancements even in the absence of glycerol within the crystallizing solution.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"122 ","pages":"Article 101836"},"PeriodicalIF":3.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0926204022000650/pdfft?md5=43ea233eefc61f244122c5bcc4bf4599&pid=1-s2.0-S0926204022000650-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10335669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Teaching product operators using the Vega diagram 教产品操作员使用织女星图
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2022-12-01 DOI: 10.1016/j.ssnmr.2022.101830
Jörg Matysik , Chen Song , Pavlo Bielytskyi , A. Alia
{"title":"Teaching product operators using the Vega diagram","authors":"Jörg Matysik ,&nbsp;Chen Song ,&nbsp;Pavlo Bielytskyi ,&nbsp;A. Alia","doi":"10.1016/j.ssnmr.2022.101830","DOIUrl":"10.1016/j.ssnmr.2022.101830","url":null,"abstract":"<div><p>We all will remember Shimon Vega (1942–2021) as wonderful human and scientist. Paramount examples of his scientific work are quoted in this special issue dedicated to his memory. This article is dedicated to remember Shimon Vega as a fantastic teacher. To introduce to the world of <em>product operators</em>, Shimon created a simple scheme that we now call the <em>Vega diagram</em>. It allows for fast analysis of pulse sequences for AX spin systems. Here, we want to document this scheme for future generations.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"122 ","pages":"Article 101830"},"PeriodicalIF":3.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33501305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the accuracy of GIPAW chemical shielding calculations with cluster and fragment corrections 通过簇和片段校正提高GIPAW化学屏蔽计算的准确性
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2022-12-01 DOI: 10.1016/j.ssnmr.2022.101832
Joshua D. Hartman , James K. Harper
{"title":"Improving the accuracy of GIPAW chemical shielding calculations with cluster and fragment corrections","authors":"Joshua D. Hartman ,&nbsp;James K. Harper","doi":"10.1016/j.ssnmr.2022.101832","DOIUrl":"10.1016/j.ssnmr.2022.101832","url":null,"abstract":"&lt;div&gt;&lt;p&gt;&lt;span&gt;Ab initio methods&lt;span&gt; for predicting NMR parameters in the solid state are an essential tool for assigning experimental spectra and play an increasingly important role in structural characterizations. Recently, a molecular correction (MC) technique has been developed which combines the strengths&lt;span&gt; of plane-wave methods (GIPAW) with single molecule calculations employing Gaussian basis sets. The GIPAW + MC method relies on a periodic calculation performed at a lower level of theory to model the crystalline environment. The GIPAW result is then corrected using a single molecule calculation performed at a higher level of theory. The success of the GIPAW + MC method in predicting a range of NMR parameters is a result of the highly local character of the tensors underlying the NMR observable. However, in applications involving strong intermolecular interactions we find that expanding the region treated at the higher level of theory more accurately captures local many-body contributions to the &lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;span&gt;&lt;math&gt;&lt;mmultiscripts&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;none&gt;&lt;/none&gt;&lt;none&gt;&lt;/none&gt;&lt;mprescripts&gt;&lt;/mprescripts&gt;&lt;none&gt;&lt;/none&gt;&lt;mrow&gt;&lt;mn&gt;15&lt;/mn&gt;&lt;/mrow&gt;&lt;/mmultiscripts&gt;&lt;/math&gt;&lt;/span&gt; NMR chemical shielding (CS) tensor. We propose alternative corrections to GIPAW which capture interactions between adjacent molecules at a higher level of theory using either fragment or cluster-based calculations. Benchmark calculations performed on &lt;span&gt;&lt;math&gt;&lt;mmultiscripts&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;none&gt;&lt;/none&gt;&lt;none&gt;&lt;/none&gt;&lt;mprescripts&gt;&lt;/mprescripts&gt;&lt;none&gt;&lt;/none&gt;&lt;mrow&gt;&lt;mn&gt;15&lt;/mn&gt;&lt;/mrow&gt;&lt;/mmultiscripts&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mmultiscripts&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;none&gt;&lt;/none&gt;&lt;none&gt;&lt;/none&gt;&lt;mprescripts&gt;&lt;/mprescripts&gt;&lt;none&gt;&lt;/none&gt;&lt;mrow&gt;&lt;mn&gt;13&lt;/mn&gt;&lt;/mrow&gt;&lt;/mmultiscripts&gt;&lt;/math&gt;&lt;/span&gt; data sets show that these advanced GIPAW-corrected calculations improve the accuracy of chemical shielding tensor predictions relative to existing methods. Specifically, cluster-based &lt;span&gt;&lt;math&gt;&lt;mmultiscripts&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;none&gt;&lt;/none&gt;&lt;none&gt;&lt;/none&gt;&lt;mprescripts&gt;&lt;/mprescripts&gt;&lt;none&gt;&lt;/none&gt;&lt;mrow&gt;&lt;mn&gt;15&lt;/mn&gt;&lt;/mrow&gt;&lt;/mmultiscripts&gt;&lt;/math&gt;&lt;/span&gt; corrections show a 24% and 17% reduction in RMS error relative to GIPAW and GIPAW + MC calculations, respectively. Comparing the benchmark data sets using multiple computational models demonstrates that &lt;span&gt;&lt;math&gt;&lt;mmultiscripts&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;none&gt;&lt;/none&gt;&lt;none&gt;&lt;/none&gt;&lt;mprescripts&gt;&lt;/mprescripts&gt;&lt;none&gt;&lt;/none&gt;&lt;mrow&gt;&lt;mn&gt;15&lt;/mn&gt;&lt;/mrow&gt;&lt;/mmultiscripts&gt;&lt;/math&gt;&lt;/span&gt; CS tensor calculations are significantly more sensitive to intermolecular interactions relative to &lt;span&gt;&lt;math&gt;&lt;mmultiscripts&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;none&gt;&lt;/none&gt;&lt;none&gt;&lt;/none&gt;&lt;mprescripts&gt;&lt;/mprescripts&gt;&lt;none&gt;&lt;/none&gt;&lt;mrow&gt;&lt;mn&gt;13&lt;/mn&gt;&lt;/mrow&gt;&lt;/mmultiscripts&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;. However, fragment and cluster-based corrections that include direct hydrogen bond&lt;span&gt; partners are sufficient for optimizing the accuracy of GIPAW-corrected methods. Finally, GIPAW","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"122 ","pages":"Article 101832"},"PeriodicalIF":3.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10335631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
19F fast MAS (60–111 kHz) dipolar and scalar based correlation spectroscopy of organic molecules and pharmaceutical formulations 有机分子和药物制剂的19F快速MAS (60-111 kHz)偶极和标量相关光谱
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2022-12-01 DOI: 10.1016/j.ssnmr.2022.101831
Gal Porat-Dahlerbruch , Jochem Struppe , Caitlin M. Quinn , Angela M. Gronenborn , Tatyana Polenova
{"title":"19F fast MAS (60–111 kHz) dipolar and scalar based correlation spectroscopy of organic molecules and pharmaceutical formulations","authors":"Gal Porat-Dahlerbruch ,&nbsp;Jochem Struppe ,&nbsp;Caitlin M. Quinn ,&nbsp;Angela M. Gronenborn ,&nbsp;Tatyana Polenova","doi":"10.1016/j.ssnmr.2022.101831","DOIUrl":"https://doi.org/10.1016/j.ssnmr.2022.101831","url":null,"abstract":"<div><p><sup>19</sup><span>F magic angle spinning (MAS) NMR spectroscopy is a powerful tool for characterization of fluorinated solids. The recent development of </span><sup>19</sup><span>F MAS NMR probes, operating at spinning frequencies of 60–111 kHz, enabled analysis of systems spanning from organic molecules to pharmaceutical formulations to biological assemblies, with unprecedented resolution. Herein, we systematically evaluate the benefits of high MAS frequencies (60–111 kHz) for 1D and 2D </span><sup>19</sup><span>F-detected experiments in two pharmaceuticals, the antimalarial drug<span> mefloquine<span> and a formulation of the cholesterol-lowering drug atorvastatin calcium. We demonstrate that </span></span></span><sup>1</sup><span><span>H decoupling is essential and that scalar-based, heteronuclear single quantum coherence (HSQC) and </span>heteronuclear multiple quantum coherence (HMQC) correlation experiments become feasible and efficient at the MAS frequency of 100 kHz. This study opens doors for the applications of high frequency </span><sup>19</sup><span>F MAS NMR to a wide range of problems in chemistry and biology.</span></p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"122 ","pages":"Article 101831"},"PeriodicalIF":3.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91684900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Improved resolution for spin-3/2 isotopes in solids via the indirect NMR detection of triple-quantum coherences using the T-HMQC sequence 利用T-HMQC序列间接核磁共振检测三量子相干提高固体中自旋3/2同位素的分辨率
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2022-12-01 DOI: 10.1016/j.ssnmr.2022.101835
Racha Bayzou , Julien Trébosc , Ivan Hung , Zhehong Gan , Andrew Rankin , Olivier Lafon , Jean-Paul Amoureux
{"title":"Improved resolution for spin-3/2 isotopes in solids via the indirect NMR detection of triple-quantum coherences using the T-HMQC sequence","authors":"Racha Bayzou ,&nbsp;Julien Trébosc ,&nbsp;Ivan Hung ,&nbsp;Zhehong Gan ,&nbsp;Andrew Rankin ,&nbsp;Olivier Lafon ,&nbsp;Jean-Paul Amoureux","doi":"10.1016/j.ssnmr.2022.101835","DOIUrl":"10.1016/j.ssnmr.2022.101835","url":null,"abstract":"<div><p><span>The indirect NMR detection of quadrupolar nuclei<span> in solids under magic-angle spinning (MAS) is possible with the through-space HMQC (heteronuclear multiple-quantum coherence) scheme incorporating the TRAPDOR (transfer of population in double-resonance) dipolar recoupling. This sequence, called T-HMQC, exhibits limited </span></span><em>t</em><sub>1</sub>-noise. In this contribution, with the help of numerical simulations of spin dynamics, we show that most of the time, the fastest coherence transfer in the T-HMQC scheme is achieved when TRAPDOR recoupling employs the highest radiofrequency (rf) field compatible with the probe specifications. We also demonstrate how the indirect detection of the triple-quantum (3Q) coherences of spin-3/2 quadrupolar nuclei in solids improves the spectral resolution for these isotopes. The sequence is then called T-HMQC<sub>3</sub>. We demonstrate the gain in resolution provided by this sequence for the indirect proton detection of <sup>35</sup>Cl nuclei in <span>l</span>-histidine∙HCl and <span>l</span>-cysteine∙HCl, as well as that of <sup>23</sup>Na isotope in NaH<sub>2</sub>PO<sub>4</sub>. These experiments indicate that the gain in resolution depends on the relative values of the chemical and quadrupolar-induced shifts (QIS) for the different spin-3/2 species. In the case of NaH<sub>2</sub>PO<sub>4</sub>, we show that the transfer efficiency of the T-HMQC<sub>3</sub> sequence employing an rf-field of 80 kHz with a MAS frequency of 62.5 kHz reaches 75% of that of the <em>t</em><sub>1</sub>-noise eliminated (TONE) dipolar-mediated HMQC (<em>D</em>-HMQC) scheme.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"122 ","pages":"Article 101835"},"PeriodicalIF":3.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10337117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A case study on the influence of hydrophilicity on the signal enhancement by dynamic nuclear polarization 亲水性对动态核极化信号增强影响的实例研究
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2022-12-01 DOI: 10.1016/j.ssnmr.2022.101829
Sonja C. Döller , Torsten Gutmann , Markus Hoffmann , Gerd Buntkowsky
{"title":"A case study on the influence of hydrophilicity on the signal enhancement by dynamic nuclear polarization","authors":"Sonja C. Döller ,&nbsp;Torsten Gutmann ,&nbsp;Markus Hoffmann ,&nbsp;Gerd Buntkowsky","doi":"10.1016/j.ssnmr.2022.101829","DOIUrl":"10.1016/j.ssnmr.2022.101829","url":null,"abstract":"<div><p><span>In this work, the behavior of four different commercially available polarizing agents is investigated employing the non-ionic model surfactant<span> 1-octanol as analyte. A relative method for the comparison of the proportion of the direct and indirect polarization transfer<span> pathways is established, allowing a direct comparison of the polarization efficacy for different radicals and different parts of the 1-octanol molecule despite differences in radical concentration or sample amount. With this approach, it could be demonstrated that the hydrophilicity is a key factor in the way polarization is transferred from the polarizing agent to the analyte. These findings are confirmed by the determination of buildup times T</span></span></span><sub>b</sub><span>, illustrating that the choice of polarizing agent plays an essential role in ensuring an optimal polarization transfer and therefore the maximum amount of enhancement possible for DNP enhanced NMR measurements.</span></p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"122 ","pages":"Article 101829"},"PeriodicalIF":3.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10397171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Solid-state NMR methods for the characterization of bioconjugations and protein-material interactions 固体核磁共振方法表征生物偶联和蛋白质-材料相互作用
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2022-12-01 DOI: 10.1016/j.ssnmr.2022.101828
Linda Cerofolini , Giacomo Parigi , Enrico Ravera , Marco Fragai , Claudio Luchinat
{"title":"Solid-state NMR methods for the characterization of bioconjugations and protein-material interactions","authors":"Linda Cerofolini ,&nbsp;Giacomo Parigi ,&nbsp;Enrico Ravera ,&nbsp;Marco Fragai ,&nbsp;Claudio Luchinat","doi":"10.1016/j.ssnmr.2022.101828","DOIUrl":"10.1016/j.ssnmr.2022.101828","url":null,"abstract":"<div><p><span>Protein solid-state NMR has evolved dramatically over the last two decades, with the development of new hardware and sample preparation methodologies. This technique is now ripe for complex applications, among which one can count bioconjugation, protein </span>chemistry and functional biomaterials. In this review, we provide our account on this aspect of protein solid-state NMR.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"122 ","pages":"Article 101828"},"PeriodicalIF":3.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10341510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Narrowing down the conformational space with solid-state NMR in crystal structure prediction of linezolid cocrystals 利用固体核磁共振缩小利奈唑胺共晶的构象空间
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2022-10-01 DOI: 10.1016/j.ssnmr.2022.101813
Mehrnaz Khalaji, Piotr Paluch, Marek J. Potrzebowski, Marta K. Dudek
{"title":"Narrowing down the conformational space with solid-state NMR in crystal structure prediction of linezolid cocrystals","authors":"Mehrnaz Khalaji,&nbsp;Piotr Paluch,&nbsp;Marek J. Potrzebowski,&nbsp;Marta K. Dudek","doi":"10.1016/j.ssnmr.2022.101813","DOIUrl":"10.1016/j.ssnmr.2022.101813","url":null,"abstract":"<div><p>Many solids crystallize as microcrystalline powders, thus precluding the application of single crystal X-Ray diffraction in structural elucidation. In such cases, a joint use of high-resolution solid-state NMR and crystal structure prediction (CSP) calculations can be successful. However, for molecules showing significant conformational freedom, the CSP-NMR protocol can meet serious obstacles, including ambiguities in NMR signal assignment and too wide conformational search space to be covered by computational methods in reasonable time. Here, we demonstrate a possible way of avoiding these obstacles and making as much use of the two methods as possible in difficult circumstances. In a simple case, our experiments led to crystal structure elucidation of a cocrystal of linezolid (LIN), a wide-range antibiotic, with 2,3-dihydroxybenzoic acid, while a significantly more challenging case of a cocrystal of LIN with 2,4-dihydroxybenzoic acid led to the identification of the most probable conformations of LIN inside the crystal. Having four rotatable bonds, some of which can assume many discreet values, LIN molecule poses a challenge in establishing its conformation in a solid phase. In our work, a set of 27 conformations were used in CSP calculations to yield model crystal structures to be examined against experimental solid-state NMR data, leading to a reliable identification of the most probable molecular arrangements.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"121 ","pages":"Article 101813"},"PeriodicalIF":3.2,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S092620402200042X/pdfft?md5=a5776a2ee30ff0ec8d7bfcff5950a35e&pid=1-s2.0-S092620402200042X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40611293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信