Solid state nuclear magnetic resonance最新文献

筛选
英文 中文
Cryogen-free 400 MHz (9.4 T) solid state MAS NMR system with liquid state NMR potential 无低温400 MHz (9.4 T)固态MAS核磁共振系统与液态核磁共振电位
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2023-06-01 DOI: 10.1016/j.ssnmr.2023.101873
Eugeny Kryukov , Alexander Karabanov , Denis Langlais , Dinu Iuga , Rupert Reckless , Jeremy Good
{"title":"Cryogen-free 400 MHz (9.4 T) solid state MAS NMR system with liquid state NMR potential","authors":"Eugeny Kryukov ,&nbsp;Alexander Karabanov ,&nbsp;Denis Langlais ,&nbsp;Dinu Iuga ,&nbsp;Rupert Reckless ,&nbsp;Jeremy Good","doi":"10.1016/j.ssnmr.2023.101873","DOIUrl":"10.1016/j.ssnmr.2023.101873","url":null,"abstract":"<div><p><span>We show that the temporal magnetic field distortion generated by the Cold Head operation can be removed and high quality Solid-State Magic Angle Spinning </span>NMR results can be obtained with a cryogen-free magnet. The compact design of the cryogen-free magnets allows for the probe to be inserted either from the bottom (as in most NMR systems) or, more conveniently, from the top. The magnetic field settling time can be made as short as an hour after a field ramp. Therefore, a single cryogen-free magnet can be used at different fixed fields. The magnetic field can be changed every day without compromising the measurement resolution.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"125 ","pages":"Article 101873"},"PeriodicalIF":3.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9604606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Indirectly detected satellite-transition quadrupolar NMR via progressive saturation of the proton reservoir 通过质子储层的逐渐饱和间接探测到卫星跃迁四极核磁共振
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2023-06-01 DOI: 10.1016/j.ssnmr.2023.101862
Tamar Wolf , Anna Eden-Kossoy , Lucio Frydman
{"title":"Indirectly detected satellite-transition quadrupolar NMR via progressive saturation of the proton reservoir","authors":"Tamar Wolf ,&nbsp;Anna Eden-Kossoy ,&nbsp;Lucio Frydman","doi":"10.1016/j.ssnmr.2023.101862","DOIUrl":"10.1016/j.ssnmr.2023.101862","url":null,"abstract":"<div><p><span>Static satellite-transitions (ST) NMR<span><span> line shapes from half-integer quadrupolar nuclei could be very informative: they can deliver insight about local motions over a wide range of timescales, and can report on small changes in the local electronic environments as reflected by variations in the quadrupolar parameters. Satellite transitions, however, are typically “invisible” for half-integer quadrupolar nuclei due to their sheer breadth, leading to low signal-to-noise ratio –especially for unreceptive low-gamma or dilute quadrupolar nuclei. Very recently we have introduced a method for enhancing the NMR sensitivity of unreceptive X nuclei in static solids dubbed </span>PROgressive Saturation of the Proton Reservoir (PROSPR), which opens the possibility of magnifying the signals from such spins by repeatedly imprinting frequency-selective X-driven depolarizations on the much more sensitive </span></span><sup>1</sup><span>H NMR signal. Here, we show that PROSPR's efficacy is high enough for enabling the detection of static ST NMR for challenging species like </span><sup>35</sup>Cl, <sup>33</sup>S and even <sup>17</sup>O –all at natural-abundance. The ensuing ST-PROSPR NMR experiment thus opens new approaches to probe ultra-wideline (6–8 MHz wide) spectra. These highly pronounced anisotropies can in turn deliver new vistas about dynamic changes in solids, as here illustrated by tracking ST line shapes as a function of temperature during thermally-driven events.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"125 ","pages":"Article 101862"},"PeriodicalIF":3.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9596666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On the applicability of cosine-modulated pulses for high-resolution solid-state NMR of quadrupolar nuclei with spin > 3/2 余弦调制脉冲在自旋bbb3 /2的四极核的高分辨率固态核磁共振中的适用性
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2023-06-01 DOI: 10.1016/j.ssnmr.2023.101863
Akiko Sasaki , Julien Trébosc , Hiroki Nagashima , Jean-Paul Amoureux
{"title":"On the applicability of cosine-modulated pulses for high-resolution solid-state NMR of quadrupolar nuclei with spin > 3/2","authors":"Akiko Sasaki ,&nbsp;Julien Trébosc ,&nbsp;Hiroki Nagashima ,&nbsp;Jean-Paul Amoureux","doi":"10.1016/j.ssnmr.2023.101863","DOIUrl":"10.1016/j.ssnmr.2023.101863","url":null,"abstract":"<div><p><span><span>In MQMAS-based high-resolution solid-state NMR experiments of half-integer spin quadrupolar nuclei, the high radiofrequency (RF) field requirement for the MQ excitation and conversion steps with two hard-pulses is often a sensitivity limiting factor in many practical applications. Recently, the use of two cosine-modulated (cos) low-power (lp) pulses, lasting one-rotor period each, was successfully introduced for efficient MQ excitation and conversion of spin-3/2 nuclei with a reduced RF amplitude. In this study, we extend our previous investigations of spin-3/2 nuclei to systems with higher spin values and discuss the applicability of coslp-MQ excitation and conversion in </span>MQMAS and MQ-HETCOR experiments under slow and fast spinning conditions. For the numerical simulations and experiments we used a moderate magnetic field of 14.1 T. Two spin-5/2 nuclei (</span><sup>85</sup>Rb and <sup>27</sup>Al) are mainly employed with a large variety of C<sub>Q</sub> values, but we show that the practical set up is also available for higher spin values, such as spin-9/2 with <sup>93</sup>Nb in Cs<sub>4</sub>Nb<sub>11</sub>O<sub>30</sub>. We demonstrate for nuclei with spin value larger than 3/2 a preferential use of coslp-MQ acquisition for low-gamma nuclei and/or large C<sub>Q</sub> values with a much reduced RF-field with respect to that of hard-pulses used with conventional methods.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"125 ","pages":"Article 101863"},"PeriodicalIF":3.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9604970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cryogen-free 400 MHz (9.4 T) solid state MAS NMR system with liquid state NMR potential. 无低温400 MHz (9.4 T)固态MAS核磁共振系统与液态核磁共振电位。
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2023-05-01 DOI: 10.2139/ssrn.4377536
E. Kryukov, A. Karabanov, D. Langlais, D. Iuga, Rupert Reckless, J. Good
{"title":"Cryogen-free 400 MHz (9.4 T) solid state MAS NMR system with liquid state NMR potential.","authors":"E. Kryukov, A. Karabanov, D. Langlais, D. Iuga, Rupert Reckless, J. Good","doi":"10.2139/ssrn.4377536","DOIUrl":"https://doi.org/10.2139/ssrn.4377536","url":null,"abstract":"We show that the temporal magnetic field distortion generated by the Cold Head operation can be removed and high quality Solid-State Magic Angle Spinning NMR results can be obtained with a cryogen-free magnet. The compact design of the cryogen-free magnets allows for the probe to be inserted either from the bottom (as in most NMR systems) or, more conveniently, from the top. The magnetic field settling time can be made as short as an hour after a field ramp. Therefore, a single cryogen-free magnet can be used at different fixed fields. The magnetic field can be changed every day without compromising the measurement resolution.","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"125 1","pages":"101873"},"PeriodicalIF":3.2,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43022577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asynchronising five-fold symmetry sequence for better homonuclear polarisation transfer in magic-angle-spinning solid-state NMR 在魔角自旋固体核磁共振中,采用异步五重对称序列实现更好的同核极化转移
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2023-04-01 DOI: 10.1016/j.ssnmr.2023.101858
Vaishali Arunachalam, Kshama Sharma, Kaustubh R. Mote, P.K. Madhu
{"title":"Asynchronising five-fold symmetry sequence for better homonuclear polarisation transfer in magic-angle-spinning solid-state NMR","authors":"Vaishali Arunachalam,&nbsp;Kshama Sharma,&nbsp;Kaustubh R. Mote,&nbsp;P.K. Madhu","doi":"10.1016/j.ssnmr.2023.101858","DOIUrl":"10.1016/j.ssnmr.2023.101858","url":null,"abstract":"<div><p>Recoupling, decoupling, and multidimensional correlation experiments in magic-angle-spinning (MAS) solid-state NMR can be designed by exploiting the symmetry of internal spin interactions. One such scheme, namely, <span><math><msubsup><mrow><mi>C</mi><mn>5</mn></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>, and its supercycled version <span><math><msubsup><mrow><mi>S</mi><mi>P</mi><mi>C</mi><mn>5</mn></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>, notated as a five-fold symmetry sequence, is widely used for double-quantum dipole-dipole recoupling. Such schemes are generally rotor synchronised by design. We demonstrate an asynchronous implementation of the <span><math><msubsup><mrow><mi>S</mi><mi>P</mi><mi>C</mi><mn>5</mn></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span><span> sequence leading to higher double-quantum homonuclear polarisation transfer<span> efficiency compared to the normal synchronous implementation. Rotor-synchronisation is broken in two different ways: lengthening the duration of one of the pulses, denoted as pulse-width variation (PWV), and mismatching the MAS frequency denoted as MAS variation (MASV). The application of this asynchronous sequence is shown on three different samples, namely, U–</span></span><sup>13</sup>C-alanine and 1,4-<sup>13</sup><span>C-labelled ammonium phthalate which include </span><sup>13</sup>C<sub><em>α</em></sub>-<sup>13</sup>C<sub><em>β</em></sub>, <sup>13</sup>C<sub><em>α</em></sub>-<sup>13</sup>C<sub>o</sub>, and <sup>13</sup>C<sub>o</sub>–<sup>13</sup>C<sub>o</sub> spin systems, and adenosine 5′- triphosphate disodium salt trihydrate (ATP⋅3H<sub>2</sub>O). We show that the asynchronous version performs better for spin pairs with small dipole-dipole couplings and large chemical-shift anisotropies, for example, <sup>13</sup>C<sub>o</sub>–<sup>13</sup>C<sub>o</sub>. Simulations and experiments are shown to corroborate the results.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"124 ","pages":"Article 101858"},"PeriodicalIF":3.2,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9617354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the applicability of cosine-modulated pulses for high-resolution solid-state NMR of quadrupolar nuclei with spin > 3/2. 关于余弦调制脉冲在自旋>3/2的四极核的高分辨率固态NMR中的适用性。
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2023-04-01 DOI: 10.2139/ssrn.4359541
Akiko Sasaki, J. Trébosc, H. Nagashima, J. Amoureux
{"title":"On the applicability of cosine-modulated pulses for high-resolution solid-state NMR of quadrupolar nuclei with spin > 3/2.","authors":"Akiko Sasaki, J. Trébosc, H. Nagashima, J. Amoureux","doi":"10.2139/ssrn.4359541","DOIUrl":"https://doi.org/10.2139/ssrn.4359541","url":null,"abstract":"In MQMAS-based high-resolution solid-state NMR experiments of half-integer spin quadrupolar nuclei, the high radiofrequency (RF) field requirement for the MQ excitation and conversion steps with two hard-pulses is often a sensitivity limiting factor in many practical applications. Recently, the use of two cosine-modulated (cos) low-power (lp) pulses, lasting one-rotor period each, was successfully introduced for efficient MQ excitation and conversion of spin-3/2 nuclei with a reduced RF amplitude. In this study, we extend our previous investigations of spin-3/2 nuclei to systems with higher spin values and discuss the applicability of coslp-MQ excitation and conversion in MQMAS and MQ-HETCOR experiments under slow and fast spinning conditions. For the numerical simulations and experiments we used a moderate magnetic field of 14.1 T. Two spin-5/2 nuclei (85Rb and 27Al) are mainly employed with a large variety of CQ values, but we show that the practical set up is also available for higher spin values, such as spin-9/2 with 93Nb in Cs4Nb11O30. We demonstrate for nuclei with spin value larger than 3/2 a preferential use of coslp-MQ acquisition for low-gamma nuclei and/or large CQ values with a much reduced RF-field with respect to that of hard-pulses used with conventional methods.","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"125 1","pages":"101863"},"PeriodicalIF":3.2,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43413156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective excitation with recoupling pulse schemes uncover properties of disordered mineral phases in bone-like apatite grown with bone proteins 选择性激发与耦合脉冲方案揭示无序矿物相的性质在骨样磷灰石生长与骨蛋白
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2023-04-01 DOI: 10.1016/j.ssnmr.2023.101860
Irina Matlahov , Alexey Kulpanovich, Taly Iline-Vul, Merav Nadav-Tsubery, Gil Goobes
{"title":"Selective excitation with recoupling pulse schemes uncover properties of disordered mineral phases in bone-like apatite grown with bone proteins","authors":"Irina Matlahov ,&nbsp;Alexey Kulpanovich,&nbsp;Taly Iline-Vul,&nbsp;Merav Nadav-Tsubery,&nbsp;Gil Goobes","doi":"10.1016/j.ssnmr.2023.101860","DOIUrl":"10.1016/j.ssnmr.2023.101860","url":null,"abstract":"<div><p>Bone construction has been under intensive scrutiny for many years using numerous techniques. Solid-state NMR spectroscopy<span><span> helped unravel key characteristics of the mineral structure in bone owing to its capability of analyzing crystalline and disordered phases at high-resolution. This has invoked new questions regarding the roles of persistent disordered phases in structural integrity and mechanical function of mature bone as well as regarding regulation of early events in formation of </span>apatite by bone proteins which interact intimately with the different mineral phases to exert biological control.</span></p><p><span>Here, spectral editing tethered to standard NMR techniques is employed to analyze bone-like apatite minerals prepared synthetically in the presence and absence of two non-collagenous bone proteins, osteocalcin and osteonectin. A </span><sup>1</sup><span><span>H spectral editing block allows excitation of species from the crystalline and disordered phases selectively, facilitating analysis of phosphate or carbon species in each phase by magnetization transfer via </span>cross polarization<span>. Further characterization of phosphate proximities using SEDRA dipolar recoupling<span>, cross-phase magnetization transfer using DARR and T</span></span></span><sub>1</sub>/T<sub>2</sub> relaxation times demonstrate that the mineral phases formed in the presence of bone proteins are more complex than bimodal. They reveal disparities in the physical properties of the mineral layers, indicate the layers in which the proteins reside and highlight the effect that each protein imparts across the mineral layers.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"124 ","pages":"Article 101860"},"PeriodicalIF":3.2,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9292805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical description of pulse induced resonances in the homonuclear PIRATE experiment 同核PIRATE实验中脉冲诱导共振的理论描述
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2023-04-01 DOI: 10.1016/j.ssnmr.2023.101859
Orr Simon Lusky , Matthias Ernst , Amir Goldbourt
{"title":"Theoretical description of pulse induced resonances in the homonuclear PIRATE experiment","authors":"Orr Simon Lusky ,&nbsp;Matthias Ernst ,&nbsp;Amir Goldbourt","doi":"10.1016/j.ssnmr.2023.101859","DOIUrl":"10.1016/j.ssnmr.2023.101859","url":null,"abstract":"<div><p><span>Rotor-synchronous π pulses applied to protons (S) enhance homonuclear polarisation transfer between two spins (I) such as </span><sup>13</sup>C or <sup>15</sup>N as long as at least a single I–S heteronuclear dipolar-coupling interaction exists. The enhancement is maximum when the chemical-shift difference <span><math><mrow><mi>Δν</mi></mrow></math></span> between two spins equals an integer multiple, <em>n</em>, of the pulse-modulation frequency, which is half the rotor frequency ν<sub>r</sub>. This condition, applied in the Pulse Induced Resonance with Angular dependent Total Enhancement (PIRATE) experiment, can be generalised for any spacing of the pulses <em>k</em>/ν<sub>r</sub> such that <span><math><mrow><mo>Δ</mo><mi>ν</mi><mo>=</mo><mfrac><mrow><mi>n</mi><msub><mi>ν</mi><mi>r</mi></msub></mrow><mrow><mn>2</mn><mi>k</mi></mrow></mfrac></mrow></math></span><span> . We show, using average Hamiltonian theory (AHT) and Floquet theory, that the resonance conditions promote a second-order recoupling consisting of a cross-term between the homonuclear and heteronuclear dipolar interactions in a three-spin system. The minimum requirement is a coupling between the two I spins and a coupling of one of the I spins to the S spin. The effective Hamiltonian at the resonance conditions contains three-spin operators of the form </span><span><math><mrow><mn>2</mn><msubsup><mi>I</mi><mn>1</mn><mo>±</mo></msubsup><msubsup><mi>I</mi><mn>2</mn><mo>∓</mo></msubsup><msub><mi>S</mi><mi>z</mi></msub></mrow></math></span><span> with a non-zero effective dipolar coupling<span>. Theoretical analysis shows that the effective strength of the resonance conditions decreases with increasing values of </span></span><em>k</em> and <em>n</em>. The theory is backed by numerical simulations, and experimental results on fully labelled <sup>13</sup>C-glycine demonstrating the efficiency of the different resonance condition for <span><math><mrow><mi>k</mi><mo>=</mo><mn>1,2</mn></mrow></math></span> at various spinning frequencies.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"124 ","pages":"Article 101859"},"PeriodicalIF":3.2,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9264858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TensorView for MATLAB: Visualizing tensors with Euler angle decoding TensorView for MATLAB:可视化张量与欧拉角解码
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2023-02-01 DOI: 10.1016/j.ssnmr.2022.101849
Leo Svenningsson , Leonard J. Mueller
{"title":"TensorView for MATLAB: Visualizing tensors with Euler angle decoding","authors":"Leo Svenningsson ,&nbsp;Leonard J. Mueller","doi":"10.1016/j.ssnmr.2022.101849","DOIUrl":"10.1016/j.ssnmr.2022.101849","url":null,"abstract":"<div><p>TensorView for MATLAB is a GUI-based visualization tool for depicting second-rank Cartesian tensors as surfaces on three-dimensional molecular models. Both ellipsoid and ovaloid tensor display formats are supported, and the software allows for easy conversion of Euler angles from common rotation schemes (active, passive, ZXZ, and ZYZ conventions) with visual feedback. In addition, the software displays all four orientation-equivalent Euler angle solutions for the placement of a single tensor in the molecular frame and can report relative orientations of two tensors with all 16 orientation-equivalent Euler angle sets that relate them. The salient relations are derived and illustrated through several examples. TensorView for MATLAB expands and complements the earlier implementation of TensorView within the Mathematica programming environment and can be run without a MATLAB license. TensorView for MATLAB is available through github at <span>https://github.com/LeoSvenningsson/TensorViewforMatlab</span><svg><path></path></svg>, and can also be accessed directly via the NMRbox resource.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"123 ","pages":"Article 101849"},"PeriodicalIF":3.2,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238149/pdf/nihms-1903353.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9915498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Fast magic angle spinning for the characterization of milligram quantities of organic and biological solids at natural isotopic abundance by 13C–13C correlation DNP-enhanced NMR 快速魔角旋转,通过13C–13C相关性DNP增强NMR表征天然同位素丰度下的毫克有机和生物固体
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2023-02-01 DOI: 10.1016/j.ssnmr.2022.101850
Adam N. Smith , Rania Harrabi , Thomas Halbritter , Daniel Lee , Fabien Aussenac , Patrick C.A. van der Wel , Sabine Hediger , Snorri Th. Sigurdsson , Gaël De Paëpe
{"title":"Fast magic angle spinning for the characterization of milligram quantities of organic and biological solids at natural isotopic abundance by 13C–13C correlation DNP-enhanced NMR","authors":"Adam N. Smith ,&nbsp;Rania Harrabi ,&nbsp;Thomas Halbritter ,&nbsp;Daniel Lee ,&nbsp;Fabien Aussenac ,&nbsp;Patrick C.A. van der Wel ,&nbsp;Sabine Hediger ,&nbsp;Snorri Th. Sigurdsson ,&nbsp;Gaël De Paëpe","doi":"10.1016/j.ssnmr.2022.101850","DOIUrl":"https://doi.org/10.1016/j.ssnmr.2022.101850","url":null,"abstract":"<div><p>We show that multidimensional solid-state NMR <sup>13</sup>C–<sup>13</sup><span><span><span>C correlation spectra of biomolecular assemblies and microcrystalline organic molecules can be acquired at natural isotopic abundance with only milligram quantities of sample. These experiments combine fast </span>Magic Angle Spinning of the sample, low-power </span>dipolar recoupling<span><span>, and dynamic nuclear polarization performed with AsymPol biradicals, a recently introduced family of polarizing agents. Such experiments are essential for structural characterization as they provide short- and long-range distance information. This approach is demonstrated on diverse sample types, including polyglutamine fibrils implicated in Huntington's disease and microcrystalline </span>ampicillin, a small antibiotic molecule.</span></span></p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"123 ","pages":"Article 101850"},"PeriodicalIF":3.2,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49815672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信