Solid state nuclear magnetic resonance最新文献

筛选
英文 中文
A method for fast field settling in cryogen-free superconducting magnets for NMR 核磁共振无低温超导磁体快速场沉降方法
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2020-10-01 DOI: 10.1016/j.ssnmr.2020.101684
Eugeny Kryukov, Yury Bugoslavsky, Angel Joaquin Perez Linde, Thomas Holubar, Stephen Burgess, David Marlow, Jeremy Good
{"title":"A method for fast field settling in cryogen-free superconducting magnets for NMR","authors":"Eugeny Kryukov,&nbsp;Yury Bugoslavsky,&nbsp;Angel Joaquin Perez Linde,&nbsp;Thomas Holubar,&nbsp;Stephen Burgess,&nbsp;David Marlow,&nbsp;Jeremy Good","doi":"10.1016/j.ssnmr.2020.101684","DOIUrl":"10.1016/j.ssnmr.2020.101684","url":null,"abstract":"<div><p>We propose a fast algorithm to energise a cryogen free magnet to a highly persistent state. A decay rate as low as 0.021 ​ppm/h can be achieved in less than an hour after reaching the target field. The decay rate drops further to 0.0004 ​ppm/h in the following 48 ​h. This procedure can be applied at different values of target field, which makes it feasible to use a single magnet for study of various NMR lines at different fields. The mechanism of establishing a highly stable magnetic field can be understood on the basis of the magnetic properties<span><span> of the superconducting wire, which were studied using a vibrating sample </span>magnetometer. The results confirm the high quality of the superconducting wire and joints.</span></p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101684","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38427607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
In-situ reaction monitoring of a mechanochemical ball mill reaction with solid state NMR 用固体核磁共振对机械化学球磨机反应进行现场监测
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2020-10-01 DOI: 10.1016/j.ssnmr.2020.101687
Jan Gerrit Schiffmann , Franziska Emmerling , Inês C.B. Martins , Leo Van Wüllen
{"title":"In-situ reaction monitoring of a mechanochemical ball mill reaction with solid state NMR","authors":"Jan Gerrit Schiffmann ,&nbsp;Franziska Emmerling ,&nbsp;Inês C.B. Martins ,&nbsp;Leo Van Wüllen","doi":"10.1016/j.ssnmr.2020.101687","DOIUrl":"10.1016/j.ssnmr.2020.101687","url":null,"abstract":"<div><p>We present an approach towards the <em>in situ</em><span> solid state NMR<span><span> monitoring of mechanochemical reactions in a ball mill. A miniaturized vibration ball mill is integrated into the measuring coil of a home-built solid state NMR probe, allowing for static solid state NMR measurements during the mechanochemical reaction within the vessel. The setup allows to quantitatively follow the product evolution of a prototypical mechanochemical reaction, the formation of zinc phenylphosphonate from zinc acetate and phenylphosphonic acid. </span>MAS<span> NMR investigations on the final reaction mixture confirmed a reaction yield of 89% in a typical example. Thus, NMR spectroscopy may in the future provide complementary information about reaction mechanisms of mechanochemical reactions and team up with other analytical methods which have been employed to follow reactions </span></span></span><em>in situ</em><span>, such as Raman spectroscopy or X-ray diffraction.</span></p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101687","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38360232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Combining fast magic angle spinning dynamic nuclear polarization with indirect detection to further enhance the sensitivity of solid-state NMR spectroscopy 将快速魔角自旋动态核极化与间接探测相结合,进一步提高固态核磁共振光谱的灵敏度
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2020-10-01 DOI: 10.1016/j.ssnmr.2020.101685
Zhuoran Wang , Michael P. Hanrahan , Takeshi Kobayashi , Frédéric A. Perras , Yunhua Chen , Frank Engelke , Christian Reiter , Armin Purea , Aaron J. Rossini , Marek Pruski
{"title":"Combining fast magic angle spinning dynamic nuclear polarization with indirect detection to further enhance the sensitivity of solid-state NMR spectroscopy","authors":"Zhuoran Wang ,&nbsp;Michael P. Hanrahan ,&nbsp;Takeshi Kobayashi ,&nbsp;Frédéric A. Perras ,&nbsp;Yunhua Chen ,&nbsp;Frank Engelke ,&nbsp;Christian Reiter ,&nbsp;Armin Purea ,&nbsp;Aaron J. Rossini ,&nbsp;Marek Pruski","doi":"10.1016/j.ssnmr.2020.101685","DOIUrl":"10.1016/j.ssnmr.2020.101685","url":null,"abstract":"<div><p><span><span><span>Dynamic nuclear polarization (DNP) and indirect detection are two commonly applied approaches for enhancing the sensitivity of solid-state NMR spectroscopy. However, their use in tandem has not yet been investigated. With the advent of low-temperature fast </span>magic angle spinning (MAS) probes with 1.3-mm diameter rotors capable of MAS at 40 ​kHz it becomes feasible to combine these two techniques. In this study, we performed DNP-enhanced 2D indirectly detected </span>heteronuclear correlation (idHETCOR) experiments on </span><sup>13</sup>C, <sup>15</sup>N, <sup>113</sup>Cd and <sup>89</sup><span>Y nuclei in functionalized mesoporous silica<span>, CdS nanoparticles, and Y</span></span><sub>2</sub>O<sub>3</sub><span><span><span> nanoparticles. The sensitivity of the 2D idHETCOR experiments was compared with those of DNP-enhanced directly-detected 1D cross polarization (CP) and 2D </span>HETCOR experiments performed with a standard 3.2-mm rotor. Due to low CP </span>polarization transfer<span> efficiencies and large proton linewidth, the sensitivity gains achieved by indirect detection alone were lower than in conventional (non-DNP) experiments. Nevertheless, despite the smaller sample volume the 2D idHETCOR experiments showed better absolute sensitivities than 2D HETCOR experiments for nuclei with the lowest gyromagnetic ratios. For </span></span><sup>89</sup>Y, 2D idHETCOR provided 8.2 times better sensitivity than the 1 D<sup>89</sup>Y-detected CP experiment performed with a 3.2-mm rotor.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101685","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38381848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Tailoring NMR experiments for structural characterization of amorphous biological solids: A practical guide 裁剪核磁共振实验的结构表征无定形生物固体:实用指南
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2020-10-01 DOI: 10.1016/j.ssnmr.2020.101686
John E. Kelly , Christine Chrissian , Ruth E. Stark
{"title":"Tailoring NMR experiments for structural characterization of amorphous biological solids: A practical guide","authors":"John E. Kelly ,&nbsp;Christine Chrissian ,&nbsp;Ruth E. Stark","doi":"10.1016/j.ssnmr.2020.101686","DOIUrl":"10.1016/j.ssnmr.2020.101686","url":null,"abstract":"<div><p><span>Many interesting solid-state targets for biological research do not form crystalline structures; these materials include intrinsically disordered proteins, plant biopolymer<span> composites, cell-wall polysaccharides, and </span></span>soil organic matter<span><span>. The absence of aligned repeating structural elements and atomic-level rigidity presents hurdles to achieving structural elucidation and obtaining functional insights. We describe strategies for adapting several solid-state NMR methods to determine the molecular structures and compositions of these </span>amorphous biosolids.</span></p><p>The main spectroscopic problems in studying amorphous structures by NMR are over/under-sampling of the spin signals and spectral complexity. These problems arise in part because amorphous biosolids typically contain a mix of rigid and mobile domains, making it difficult to select a single experiment or set of acquisition conditions that fairly represents all nuclear spins in a carbon-based organic sample. These issues can be addressed by running hybrid experiments, such as using direct excitation alongside cross polarization-based methods, to develop a more holistic picture of the macromolecular system. In situations of spectral crowding or overlap, the structural elucidation strategy can be further assisted by coupling <sup>13</sup>C spins to nuclei such as <sup>15</sup>N, filtering out portions of the spectrum, highlighting individual moieties of interest, and adding a second or third spectral dimension to an NMR experiment in order to spread out the resonances and link them pairwise through space or through bonds. We discuss practical aspects and illustrations from the recent literature for 1D experiments that use cross or direct polarization and both homo- and heteronuclear 2D and 3D solid-state NMR experiments.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101686","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38353990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Field-stepwise-swept QCPMG solid-state 115In NMR of indium oxide 场逐步扫描的QCPMG固态115In氧化铟核磁共振
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2020-10-01 DOI: 10.1016/j.ssnmr.2020.101688
Kazuhiko Yamada , Takumi Yamaguchi , Ryutaro Ohashi , Shinobu Ohki , Kenzo Deguchi , Kenjiro Hashi , Atsushi Goto , Tadashi Shimizu
{"title":"Field-stepwise-swept QCPMG solid-state 115In NMR of indium oxide","authors":"Kazuhiko Yamada ,&nbsp;Takumi Yamaguchi ,&nbsp;Ryutaro Ohashi ,&nbsp;Shinobu Ohki ,&nbsp;Kenzo Deguchi ,&nbsp;Kenjiro Hashi ,&nbsp;Atsushi Goto ,&nbsp;Tadashi Shimizu","doi":"10.1016/j.ssnmr.2020.101688","DOIUrl":"10.1016/j.ssnmr.2020.101688","url":null,"abstract":"<div><p>Experimental and theoretical investigations of indium-115 electric-field-gradient (EFG) tensors of indium(III) oxide, In<sub>2</sub>O<sub>3</sub>, have been presented. Field-stepwise-swept QCPMG solid-state <sup>115</sup>In NMR experiments are carried out at <em>T</em><span> ​= ​120 ​K, observed at 52.695 ​MHz, and in the range of external magnetic fields between 4.0 and 6.5 ​T. The spectral simulations yield the quadrupolar coupling constant, </span><em>C</em><sub>Q</sub> value, of 183(2) MHz and the asymmetry parameter, η<sub>Q</sub>, of 0.05(5), for In(1), and that of 126(2) MHz and η<sub>Q</sub><span> of 0.86(5) for In(2). Quantum chemical calculations are carried out to provide </span><sup>115</sup>In EFG tensor orientations with respect to the molecular structure. A relationship between operative frequencies and variable ranges of external magnetic fields is briefly discussed for field-swept solid-state <sup>115</sup>In NMR.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101688","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38397379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Recent advances in solid-state relaxation dispersion techniques 固态弛豫色散技术的最新进展
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2020-08-01 DOI: 10.1016/j.ssnmr.2020.101665
Petra Rovó
{"title":"Recent advances in solid-state relaxation dispersion techniques","authors":"Petra Rovó","doi":"10.1016/j.ssnmr.2020.101665","DOIUrl":"10.1016/j.ssnmr.2020.101665","url":null,"abstract":"<div><p>This review describes two rotating-frame (<span><math><mrow><msub><mi>R</mi><mrow><mn>1</mn><mi>ρ</mi></mrow></msub></mrow></math></span>) relaxation dispersion methods, namely the Bloch-McConnell Relaxation Dispersion and the Near-rotary Resonance Relaxation Dispersion, which enable the study of microsecond time-scale conformational fluctuations in the solid state using magic-angle-spinning nuclear magnetic resonance spectroscopy. The goal is to provide the reader with key ideas, experimental descriptions, and practical considerations associated with <span><math><mrow><msub><mi>R</mi><mrow><mn>1</mn><mi>ρ</mi></mrow></msub></mrow></math></span><span><span> measurements that are needed for analyzing relaxation dispersion and quantifying conformational exchange. While the focus is on protein motion<span>, many presented concepts can be equally well adapted to study the microsecond time-scale dynamics of other bio- (e.g. lipids, polysaccharides, nucleic acids), organic (e.g. pharmaceutical compounds), or inorganic molecules (e.g., metal organic frameworks). This article summarizes the essential contributions made by recent theoretical and experimental solid-state NMR studies to our understanding of protein motion. Here we discuss recent advances in fast </span></span>MAS<span> applications that enable the observation and atomic level characterization of sparsely populated conformational states which are otherwise inaccessible for other experimental methods. Such high-energy states are often associated with protein functions such as molecular recognition, ligand binding, or enzymatic catalysis, as well as with disease-related properties such as misfolding and amyloid formation.</span></span></p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101665","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38081014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 23
A GIPAW versus GIAO-ZORA-SO study of 13C and 15N CPMAS NMR chemical shifts of aromatic and heterocyclic bromo derivatives 芳香和杂环溴衍生物13C和15N CPMAS NMR化学位移的GIPAW和GIAO-ZORA-SO研究
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2020-08-01 DOI: 10.1016/j.ssnmr.2020.101676
Marta Marín-Luna , Rosa M. Claramunt , Concepción López , Marta Pérez-Torralba , Dionisia Sanz , Felipe Reviriego , Ibon Alkorta , José Elguero
{"title":"A GIPAW versus GIAO-ZORA-SO study of 13C and 15N CPMAS NMR chemical shifts of aromatic and heterocyclic bromo derivatives","authors":"Marta Marín-Luna ,&nbsp;Rosa M. Claramunt ,&nbsp;Concepción López ,&nbsp;Marta Pérez-Torralba ,&nbsp;Dionisia Sanz ,&nbsp;Felipe Reviriego ,&nbsp;Ibon Alkorta ,&nbsp;José Elguero","doi":"10.1016/j.ssnmr.2020.101676","DOIUrl":"10.1016/j.ssnmr.2020.101676","url":null,"abstract":"<div><p>Theoretical simulation of NMR parameters in compounds bearing heavy atoms generally requires the application of relativistic corrections. We report herein the theoretical characterization of <sup>13</sup>C and <sup>15</sup>N CPMAS NMR of known bromo-derivative crystals by using both the GIPAW and the combined GIAO-ZORA-SO approximation methods. Several statistical analyses were performed to compare both approaches, with non-relativistic GIPAW method being more useful to predict the <sup>13</sup>C and <sup>15</sup>N chemical shifts. The problem of applying GIPAW to crystal structures showing static or dynamic crystalline disorder of the special class resulting in half-protons will be discussed in detail.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101676","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38138488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Investigating discrepancies between experimental solid-state NMR and GIPAW calculation: NC–N 13C and OH⋯O 1H chemical shifts in pyridinium fumarates and their cocrystals 研究实验固态NMR和GIPAW计算之间的差异:富马酸吡啶及其共晶中的nc - n13c和OH⋯O 1H化学位移
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2020-08-01 DOI: 10.1016/j.ssnmr.2020.101662
Emily K. Corlett , Helen Blade , Leslie P. Hughes , Philip J. Sidebottom , David Walker , Richard I. Walton , Steven P. Brown
{"title":"Investigating discrepancies between experimental solid-state NMR and GIPAW calculation: NC–N 13C and OH⋯O 1H chemical shifts in pyridinium fumarates and their cocrystals","authors":"Emily K. Corlett ,&nbsp;Helen Blade ,&nbsp;Leslie P. Hughes ,&nbsp;Philip J. Sidebottom ,&nbsp;David Walker ,&nbsp;Richard I. Walton ,&nbsp;Steven P. Brown","doi":"10.1016/j.ssnmr.2020.101662","DOIUrl":"10.1016/j.ssnmr.2020.101662","url":null,"abstract":"<div><p>An NMR crystallography analysis is presented for four solid-state structures of pyridine fumarates and their cocrystals, using crystal structures deposited in the Cambridge Crystallographic Data Centre, CCDC. Experimental one-dimensional one-pulse <sup>1</sup>H and <sup>13</sup>C cross-polarisation (CP) magic-angle spinning (MAS) nuclear magnetic resonance (NMR) and two-dimensional <sup>14</sup>N–<sup>1</sup>H heteronuclear multiple-quantum coherence MAS NMR spectra are compared with gauge-including projector augmented wave (GIPAW) calculations of the <sup>1</sup>H and <sup>13</sup>C chemical shifts and the <sup>14</sup>N shifts that additionally depend on the quadrupolar interaction. Considering the high ppm (&gt;10 ​ppm) <sup>1</sup>H resonances, while there is good agreement (within 0.4 ​ppm) between experiment and GIPAW calculation for the hydrogen-bonded NH moieties, the hydrogen-bonded fumaric acid OH resonances are 1.2–1.9 ​ppm higher in GIPAW calculation as compared to experiment. For the cocrystals of a salt and a salt formed by 2-amino-5-methylpyridinium and 2-amino-6-methylpyridinium ions, a large discrepancy of 4.2 and 5.9 ​ppm between experiment and GIPAW calculation is observed for the quaternary ring carbon <sup>13</sup>C resonance that is directly bonded to two nitrogens (in the ring and in the amino group). By comparison, there is excellent agreement (within 0.2 ​ppm) for the quaternary ring carbon <sup>13</sup>C resonance directly bonded to the ring nitrogen for the salt and cocrystal of a salt formed by 2,6-lutidinium and 2,5-lutidinium, respectively.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101662","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38089000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Corrigendum to “Solid-state NMR of plant and fungal cell walls: A critical reviewˮ [Solid State Nucl. Magn. Reson. 107 (2020) 101660] “植物和真菌细胞壁的固态核磁共振:一个重要的回顾”[固态核]的勘误。粉剂。报章。107 (2020)101660]
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2020-08-01 DOI: 10.1016/j.ssnmr.2020.101675
Wancheng Zhao, Liyanage D. Fernando, Alex Kirui, Fabien Deligey, Tuo Wang
{"title":"Corrigendum to “Solid-state NMR of plant and fungal cell walls: A critical reviewˮ [Solid State Nucl. Magn. Reson. 107 (2020) 101660]","authors":"Wancheng Zhao,&nbsp;Liyanage D. Fernando,&nbsp;Alex Kirui,&nbsp;Fabien Deligey,&nbsp;Tuo Wang","doi":"10.1016/j.ssnmr.2020.101675","DOIUrl":"10.1016/j.ssnmr.2020.101675","url":null,"abstract":"","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101675","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37970928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerating high-resolution NMR of half-integer quadrupolar nuclei in solids: SPAM-MQMAS and SPAM-STMAS 固体中半整数四极核的加速高分辨率核磁共振:SPAM-MQMAS和SPAM-STMAS
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2020-08-01 DOI: 10.1016/j.ssnmr.2020.101668
Akiko Sasaki , Yu Tsutsumi , Jean-Paul Amoureux
{"title":"Accelerating high-resolution NMR of half-integer quadrupolar nuclei in solids: SPAM-MQMAS and SPAM-STMAS","authors":"Akiko Sasaki ,&nbsp;Yu Tsutsumi ,&nbsp;Jean-Paul Amoureux","doi":"10.1016/j.ssnmr.2020.101668","DOIUrl":"10.1016/j.ssnmr.2020.101668","url":null,"abstract":"<div><p><span><span>In solid-state NMR, multiple-quantum MAS (MQMAS) and satellite-transition MAS (STMAS) experiments are well-established techniques to obtain high-resolution spectra of half-integer quadrupolar nuclei. In 2004 and 2005, a soft-pulse-added-mixing (SPAM) concept was introduced by Gan and Amoureux to enhance the S/N ratio of </span>MQMAS and STMAS experiments. Despite their robustness and simplicity, SPAM approaches have not yet been widely applied. Here, we further exploit SPAM concepts for sensitivity enhancement upon acquisition of two-dimensional MQMAS and STMAS spectra and also establish a general procedure upon implementation of SPAM-MQMAS and SPAM-STMAS NMR. Its effectiveness and ease in experimental setup are demonstrated using simulations and experiments performed on I ​= ​3/2 (</span><sup>23</sup>Na, <sup>87</sup>Rb), 5/2 (<sup>27</sup>Al, <sup>85</sup>Rb) and 9/2 (<sup>93</sup>Nb) nuclei with a variety of quadrupolar coupling constants (C<sub>Q</sub>). Compared to the conventional z-filter methods, sensitivity enhancements in between 2 and 4 are achievable with SPAM. We recommend to use SPAM with a ratio of 4:1 for the number of echoes and antiechoes to safely maximize the sensitivity and resolution simultaneously. In addition, a comparison of the experimental approaches is made in the context of SPAM-MQMAS and SPAM-STMAS NMR with respect to repetition delay and spinning frequency, aiming to discuss the precautions upon making a judicious choice of high-resolution NMR methods of half-integer quadrupolar nuclei.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101668","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38135834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信