分离重叠的1H峰,并在快速MAS下使用单通道1H固态核磁共振识别其1H-1H相关性

IF 1.8 3区 化学 Q4 CHEMISTRY, PHYSICAL
Nghia Tuan Duong , Vipin Agarwal , Yusuke Nishiyama
{"title":"分离重叠的1H峰,并在快速MAS下使用单通道1H固态核磁共振识别其1H-1H相关性","authors":"Nghia Tuan Duong ,&nbsp;Vipin Agarwal ,&nbsp;Yusuke Nishiyama","doi":"10.1016/j.ssnmr.2022.101774","DOIUrl":null,"url":null,"abstract":"<div><p>Fast magic-angle spinning (≥60 ​kHz) technique has enabled the acquisition of high-resolution <sup>1</sup>H NMR spectra of solid materials. However, the spectral interpretation is still difficult because the <sup>1</sup><span>H peaks are overlapped due to the narrow chemical shift range and broad linewidths. An additional </span><sup>13</sup>C or <sup>14</sup>N or <sup>1</sup>H dimension possibly addresses the issues of overlapped proton resonances, but it leads to the elongated experimental time. Herein, we introduce a single-channel <sup>1</sup>H experiment to separate the overlapped <sup>1</sup>H peak and identify its spatially proximal <sup>1</sup>H–<sup>1</sup><span>H correlations. This sequence combines selective excitation, selective </span><sup>1</sup>H–<sup>1</sup><span>H polarization transfer by selective recoupling of protons (SERP), and broadband </span><sup>1</sup>H recoupling by back-to-back (BABA) recoupling sequences. The concept for <sup>1</sup>H separation is based on (i) the selective excitation of a well-resolved <sup>1</sup>H peak and (ii) the selective dipolar polarization transfer from this isolated <sup>1</sup>H peak to one of the <sup>1</sup>H peaks in the overlapped/poor resolution region by SERP and (iii) the detection of <sup>1</sup>H–<sup>1</sup>H correlations from these two <sup>1</sup>H peaks to other neighboring <sup>1</sup>Hs by BABA. We demonstrated the applicability of this approach to identify overlapped peaks on two molecules, β-L-aspartyl-<span>l</span><span>-alanine and Pioglitazone.HCl. The sequence allows the clear observation of </span><sup>1</sup>H–<sup>1</sup>H correlations from an overlapped <sup>1</sup>H peak without an additional heteronuclear dimension and ensures efficient polarization transfers that leads to twelve fold reduction in experimental time compared to <sup>14</sup>N edited experiments. The limitation and the conditions of applicability for this approach are discussed in detail.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"117 ","pages":"Article 101774"},"PeriodicalIF":1.8000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Separating an overlapped 1H peak and identifying its 1H-1H correlations with the use of single-channel 1H solid-state NMR at fast MAS\",\"authors\":\"Nghia Tuan Duong ,&nbsp;Vipin Agarwal ,&nbsp;Yusuke Nishiyama\",\"doi\":\"10.1016/j.ssnmr.2022.101774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fast magic-angle spinning (≥60 ​kHz) technique has enabled the acquisition of high-resolution <sup>1</sup>H NMR spectra of solid materials. However, the spectral interpretation is still difficult because the <sup>1</sup><span>H peaks are overlapped due to the narrow chemical shift range and broad linewidths. An additional </span><sup>13</sup>C or <sup>14</sup>N or <sup>1</sup>H dimension possibly addresses the issues of overlapped proton resonances, but it leads to the elongated experimental time. Herein, we introduce a single-channel <sup>1</sup>H experiment to separate the overlapped <sup>1</sup>H peak and identify its spatially proximal <sup>1</sup>H–<sup>1</sup><span>H correlations. This sequence combines selective excitation, selective </span><sup>1</sup>H–<sup>1</sup><span>H polarization transfer by selective recoupling of protons (SERP), and broadband </span><sup>1</sup>H recoupling by back-to-back (BABA) recoupling sequences. The concept for <sup>1</sup>H separation is based on (i) the selective excitation of a well-resolved <sup>1</sup>H peak and (ii) the selective dipolar polarization transfer from this isolated <sup>1</sup>H peak to one of the <sup>1</sup>H peaks in the overlapped/poor resolution region by SERP and (iii) the detection of <sup>1</sup>H–<sup>1</sup>H correlations from these two <sup>1</sup>H peaks to other neighboring <sup>1</sup>Hs by BABA. We demonstrated the applicability of this approach to identify overlapped peaks on two molecules, β-L-aspartyl-<span>l</span><span>-alanine and Pioglitazone.HCl. The sequence allows the clear observation of </span><sup>1</sup>H–<sup>1</sup>H correlations from an overlapped <sup>1</sup>H peak without an additional heteronuclear dimension and ensures efficient polarization transfers that leads to twelve fold reduction in experimental time compared to <sup>14</sup>N edited experiments. The limitation and the conditions of applicability for this approach are discussed in detail.</p></div>\",\"PeriodicalId\":21937,\"journal\":{\"name\":\"Solid state nuclear magnetic resonance\",\"volume\":\"117 \",\"pages\":\"Article 101774\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid state nuclear magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926204022000030\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid state nuclear magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926204022000030","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

摘要

快速魔角旋转(≥60 kHz)技术实现了固体材料高分辨率1H NMR光谱的采集。然而,光谱解释仍然很困难,因为化学位移范围窄,线宽宽,1H峰重叠。额外的13C或14N或1H维度可能解决质子共振重叠的问题,但它会导致实验时间延长。本文引入单通道1H实验,分离重叠1H峰,识别其空间近端1H - 1H相关性。该序列结合了选择性激发、选择性质子重耦合(SERP)的选择性1H - 1H极化转移和背靠背重耦合(BABA)序列的宽带1H重耦合。1H分离的概念是基于(i)选择性激发一个高分辨率的1H峰,(ii)选择性偶极极化从这个孤立的1H峰转移到重叠/低分辨率区域的一个1H峰,以及(iii) BABA检测这两个1H峰与其他相邻1H峰之间的1H - 1H相关性。我们证明了这种方法在确定β- l-天冬氨酸-l-丙氨酸和吡格列酮hcl两个分子重叠峰上的适用性。该序列允许从重叠的1H峰清晰地观察1H - 1H相关性,而无需额外的异核维度,并确保有效的极化转移,与14N编辑实验相比,实验时间减少了12倍。详细讨论了该方法的局限性和适用条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Separating an overlapped 1H peak and identifying its 1H-1H correlations with the use of single-channel 1H solid-state NMR at fast MAS

Separating an overlapped 1H peak and identifying its 1H-1H correlations with the use of single-channel 1H solid-state NMR at fast MAS

Fast magic-angle spinning (≥60 ​kHz) technique has enabled the acquisition of high-resolution 1H NMR spectra of solid materials. However, the spectral interpretation is still difficult because the 1H peaks are overlapped due to the narrow chemical shift range and broad linewidths. An additional 13C or 14N or 1H dimension possibly addresses the issues of overlapped proton resonances, but it leads to the elongated experimental time. Herein, we introduce a single-channel 1H experiment to separate the overlapped 1H peak and identify its spatially proximal 1H–1H correlations. This sequence combines selective excitation, selective 1H–1H polarization transfer by selective recoupling of protons (SERP), and broadband 1H recoupling by back-to-back (BABA) recoupling sequences. The concept for 1H separation is based on (i) the selective excitation of a well-resolved 1H peak and (ii) the selective dipolar polarization transfer from this isolated 1H peak to one of the 1H peaks in the overlapped/poor resolution region by SERP and (iii) the detection of 1H–1H correlations from these two 1H peaks to other neighboring 1Hs by BABA. We demonstrated the applicability of this approach to identify overlapped peaks on two molecules, β-L-aspartyl-l-alanine and Pioglitazone.HCl. The sequence allows the clear observation of 1H–1H correlations from an overlapped 1H peak without an additional heteronuclear dimension and ensures efficient polarization transfers that leads to twelve fold reduction in experimental time compared to 14N edited experiments. The limitation and the conditions of applicability for this approach are discussed in detail.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
9.40%
发文量
42
审稿时长
72 days
期刊介绍: The journal Solid State Nuclear Magnetic Resonance publishes original manuscripts of high scientific quality dealing with all experimental and theoretical aspects of solid state NMR. This includes advances in instrumentation, development of new experimental techniques and methodology, new theoretical insights, new data processing and simulation methods, and original applications of established or novel methods to scientific problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信