Effect of cross polarization radiofrequency phases on signal phase

IF 1.8 3区 化学 Q4 CHEMISTRY, PHYSICAL
S. Chandra Shekar , Wancheng Zhao , Thomas K. Weldeghiorghis, Tuo Wang
{"title":"Effect of cross polarization radiofrequency phases on signal phase","authors":"S. Chandra Shekar ,&nbsp;Wancheng Zhao ,&nbsp;Thomas K. Weldeghiorghis,&nbsp;Tuo Wang","doi":"10.1016/j.ssnmr.2021.101771","DOIUrl":null,"url":null,"abstract":"<div><p><span>Utilizing phases of radio frequency (RF) pulses to manipulate spin dynamics is routine in NMR and MRI, leading to spectacular techniques like phase cycling. In a very different area, cross polarization (CP) also has a long history as part of a vast number of solid-state NMR pulse sequences. However, a detailed study devoted to the effect of CP RF phases on </span>NMR signal<span>, seems not to be readily available. From first principles, we arrive at a simple dependence of NMR signal on arbitrary CP RF phases, for static and MAS conditions, accompanied by experimental verification. In the process, the CP propagator emerges as a product of RF “pulses” and a period of “free precession”, conforming to coherence transfer pathway theory. The theoretical expressions may lend confidence for dealing with CP blocks with tunable phases in pulse sequences.</span></p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"117 ","pages":"Article 101771"},"PeriodicalIF":1.8000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid state nuclear magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092620402100059X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2

Abstract

Utilizing phases of radio frequency (RF) pulses to manipulate spin dynamics is routine in NMR and MRI, leading to spectacular techniques like phase cycling. In a very different area, cross polarization (CP) also has a long history as part of a vast number of solid-state NMR pulse sequences. However, a detailed study devoted to the effect of CP RF phases on NMR signal, seems not to be readily available. From first principles, we arrive at a simple dependence of NMR signal on arbitrary CP RF phases, for static and MAS conditions, accompanied by experimental verification. In the process, the CP propagator emerges as a product of RF “pulses” and a period of “free precession”, conforming to coherence transfer pathway theory. The theoretical expressions may lend confidence for dealing with CP blocks with tunable phases in pulse sequences.

Abstract Image

交叉极化射频相位对信号相位的影响
利用射频(RF)脉冲的相位来操纵自旋动力学在核磁共振和核磁共振中是常规的,导致了像相位循环这样的壮观技术。在一个非常不同的领域,交叉极化(CP)作为大量固态核磁共振脉冲序列的一部分也有着悠久的历史。然而,关于CP射频相位对核磁共振信号的影响的详细研究似乎并不容易获得。从第一原理出发,我们得出了静态和MAS条件下核磁共振信号对任意CP RF相位的简单依赖,并进行了实验验证。在此过程中,CP传播子作为RF“脉冲”和一段“自由进动”的产物出现,符合相干转移路径理论。理论表达式为处理脉冲序列中相位可调的CP块提供了信心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
9.40%
发文量
42
审稿时长
72 days
期刊介绍: The journal Solid State Nuclear Magnetic Resonance publishes original manuscripts of high scientific quality dealing with all experimental and theoretical aspects of solid state NMR. This includes advances in instrumentation, development of new experimental techniques and methodology, new theoretical insights, new data processing and simulation methods, and original applications of established or novel methods to scientific problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信