涉及自旋3/2四极核的快速MAS TRAPDOR-HMQC实验中的有效哈密顿量和自旋动力学

IF 1.8 3区 化学 Q4 CHEMISTRY, PHYSICAL
Sadasivan V. Sajith , Sundaresan Jayanthi , Adonis Lupulescu
{"title":"涉及自旋3/2四极核的快速MAS TRAPDOR-HMQC实验中的有效哈密顿量和自旋动力学","authors":"Sadasivan V. Sajith ,&nbsp;Sundaresan Jayanthi ,&nbsp;Adonis Lupulescu","doi":"10.1016/j.ssnmr.2022.101821","DOIUrl":null,"url":null,"abstract":"<div><p>We present a theoretical and numerical description of the spin dynamics associated with TRAPDOR-HMQC (T-HMQC) experiment for a <sup>1</sup>H (<em>I</em>) – <sup>35</sup>Cl (<em>S</em><span>) spin system under fast magic angle spinning (MAS). Towards this an exact effective Hamiltonian describing the system is numerically evaluated with </span><em>matrix logarithm</em> approach. The different magnitudes of the <em>heteronuclear</em> and <span><em>pure</em><em> S</em></span><span> terms in the effective Hamiltonian allow us to suggest a truncation approximation, which is shown to be in excellent agreement with the exact time evolution. Limitations of this approximation, especially at the rotary resonance condition, are discussed. The truncated effective Hamiltonian is further employed to monitor the buildup of various coherences during TRAPDOR<span> irradiation. We observe and explain a functional resemblance between the magnitude of different terms in the truncated effective Hamiltonian and the amplitudes of various coherences during TRAPDOR irradiation, as function of crystallite orientation. Subsequently, the dependence of the sign (phase) of the T-HMQC signal on the coherence type generated is investigated numerically and analytically. We examine the continuous creation and evolution of various coherences at arbitrary times, i.e., at and between avoided level crossings. Behavior between consecutive crossings is described analytically and reveals ‘quadrature’ evolution of pairs of coherences and </span></span><em>coherence interconversions</em>. The adiabatic, sudden, and intermediate regimes for T-HMQC experiments are discussed within the approach established by A. J. Vega. Equations as well as numerical simulations suggest the existence of a driving coherence which builds up between consecutive crossings and then gets distributed at crossings among other coherences. In the intermediate regime, redistribution of the driving coherence to other coherences is almost uniform such that coherences involving <em>S</em>-spin double-quantum terms may be efficiently produced.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"122 ","pages":"Article 101821"},"PeriodicalIF":1.8000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effective Hamiltonian and spin dynamics in fast MAS TRAPDOR-HMQC experiments involving spin-3/2 quadrupolar nuclei\",\"authors\":\"Sadasivan V. Sajith ,&nbsp;Sundaresan Jayanthi ,&nbsp;Adonis Lupulescu\",\"doi\":\"10.1016/j.ssnmr.2022.101821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a theoretical and numerical description of the spin dynamics associated with TRAPDOR-HMQC (T-HMQC) experiment for a <sup>1</sup>H (<em>I</em>) – <sup>35</sup>Cl (<em>S</em><span>) spin system under fast magic angle spinning (MAS). Towards this an exact effective Hamiltonian describing the system is numerically evaluated with </span><em>matrix logarithm</em> approach. The different magnitudes of the <em>heteronuclear</em> and <span><em>pure</em><em> S</em></span><span> terms in the effective Hamiltonian allow us to suggest a truncation approximation, which is shown to be in excellent agreement with the exact time evolution. Limitations of this approximation, especially at the rotary resonance condition, are discussed. The truncated effective Hamiltonian is further employed to monitor the buildup of various coherences during TRAPDOR<span> irradiation. We observe and explain a functional resemblance between the magnitude of different terms in the truncated effective Hamiltonian and the amplitudes of various coherences during TRAPDOR irradiation, as function of crystallite orientation. Subsequently, the dependence of the sign (phase) of the T-HMQC signal on the coherence type generated is investigated numerically and analytically. We examine the continuous creation and evolution of various coherences at arbitrary times, i.e., at and between avoided level crossings. Behavior between consecutive crossings is described analytically and reveals ‘quadrature’ evolution of pairs of coherences and </span></span><em>coherence interconversions</em>. The adiabatic, sudden, and intermediate regimes for T-HMQC experiments are discussed within the approach established by A. J. Vega. Equations as well as numerical simulations suggest the existence of a driving coherence which builds up between consecutive crossings and then gets distributed at crossings among other coherences. In the intermediate regime, redistribution of the driving coherence to other coherences is almost uniform such that coherences involving <em>S</em>-spin double-quantum terms may be efficiently produced.</p></div>\",\"PeriodicalId\":21937,\"journal\":{\"name\":\"Solid state nuclear magnetic resonance\",\"volume\":\"122 \",\"pages\":\"Article 101821\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid state nuclear magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926204022000509\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid state nuclear magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926204022000509","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

摘要

本文对快速魔角自旋(MAS)下1H (I) - 35Cl (S)自旋体系的trapor - hmqc (T-HMQC)实验的自旋动力学进行了理论和数值描述。为此,用矩阵对数方法对描述系统的精确有效哈密顿量进行了数值计算。有效哈密顿量中异核和纯S项的不同量级使我们能够提出一个截断近似,该近似被证明与精确的时间演化非常吻合。讨论了这种近似的局限性,特别是在旋转共振条件下。截断的有效哈密顿量进一步用于监测TRAPDOR辐照过程中各种相干的积累。我们观察并解释了截断有效哈密顿量中不同项的幅度与TRAPDOR辐照期间各种相干的幅度之间的函数相似性,作为晶体取向的函数。随后,对T-HMQC信号的符号(相位)与相干型的关系进行了数值和解析研究。我们研究了在任意时间,即在避免的平交道口和之间,各种相干性的连续创造和进化。连续交叉点之间的行为被解析地描述,并揭示了相干对和相干相互转换的“正交”演化。在Vega建立的方法中讨论了T-HMQC实验的绝热、突然和中间状态。方程和数值模拟表明,驱动相干存在于连续的交叉点之间,然后分布在其他相干点之间的交叉点。在中间状态下,驱动相干到其他相干的再分配几乎是均匀的,从而可以有效地产生涉及s自旋双量子项的相干。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effective Hamiltonian and spin dynamics in fast MAS TRAPDOR-HMQC experiments involving spin-3/2 quadrupolar nuclei

Effective Hamiltonian and spin dynamics in fast MAS TRAPDOR-HMQC experiments involving spin-3/2 quadrupolar nuclei

We present a theoretical and numerical description of the spin dynamics associated with TRAPDOR-HMQC (T-HMQC) experiment for a 1H (I) – 35Cl (S) spin system under fast magic angle spinning (MAS). Towards this an exact effective Hamiltonian describing the system is numerically evaluated with matrix logarithm approach. The different magnitudes of the heteronuclear and pure S terms in the effective Hamiltonian allow us to suggest a truncation approximation, which is shown to be in excellent agreement with the exact time evolution. Limitations of this approximation, especially at the rotary resonance condition, are discussed. The truncated effective Hamiltonian is further employed to monitor the buildup of various coherences during TRAPDOR irradiation. We observe and explain a functional resemblance between the magnitude of different terms in the truncated effective Hamiltonian and the amplitudes of various coherences during TRAPDOR irradiation, as function of crystallite orientation. Subsequently, the dependence of the sign (phase) of the T-HMQC signal on the coherence type generated is investigated numerically and analytically. We examine the continuous creation and evolution of various coherences at arbitrary times, i.e., at and between avoided level crossings. Behavior between consecutive crossings is described analytically and reveals ‘quadrature’ evolution of pairs of coherences and coherence interconversions. The adiabatic, sudden, and intermediate regimes for T-HMQC experiments are discussed within the approach established by A. J. Vega. Equations as well as numerical simulations suggest the existence of a driving coherence which builds up between consecutive crossings and then gets distributed at crossings among other coherences. In the intermediate regime, redistribution of the driving coherence to other coherences is almost uniform such that coherences involving S-spin double-quantum terms may be efficiently produced.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
9.40%
发文量
42
审稿时长
72 days
期刊介绍: The journal Solid State Nuclear Magnetic Resonance publishes original manuscripts of high scientific quality dealing with all experimental and theoretical aspects of solid state NMR. This includes advances in instrumentation, development of new experimental techniques and methodology, new theoretical insights, new data processing and simulation methods, and original applications of established or novel methods to scientific problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信