Solid state nuclear magnetic resonance最新文献

筛选
英文 中文
NMR crystallography of amino acids 氨基酸的核磁共振晶体学
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2024-02-19 DOI: 10.1016/j.ssnmr.2024.101921
Ema Chaloupecká , Václav Tyrpekl , Kateřina Bártová , Yusuke Nishiyama , Martin Dračínský
{"title":"NMR crystallography of amino acids","authors":"Ema Chaloupecká ,&nbsp;Václav Tyrpekl ,&nbsp;Kateřina Bártová ,&nbsp;Yusuke Nishiyama ,&nbsp;Martin Dračínský","doi":"10.1016/j.ssnmr.2024.101921","DOIUrl":"10.1016/j.ssnmr.2024.101921","url":null,"abstract":"<div><p>The development of NMR crystallography methods requires a reliable database of chemical shifts measured for systems with known crystal structure. We measured and assigned carbon and hydrogen chemical shifts of twenty solid natural amino acids of known polymorphic structure, meticulously determined using powder X-ray diffraction. We then correlated the experimental data with DFT-calculated isotropic shieldings. The small size of the unit cell of most amino acids allowed for advanced computations using various families of DFT functionals, including generalized gradient approximation (GGA), <em>meta</em>-GGA and hybrid DFT functionals. We tested several combinations of functionals for geometry optimizations and NMR calculations. For carbon shieldings, the widely used GGA functional PBE performed very well, although an improvement could be achieved by adding shielding corrections calculated for isolated molecules using a hybrid functional. For hydrogen nuclei, we observed the best performance for NMR calculations carried out with structures optimized at the hybrid DFT level. The high fidelity of the calculations made it possible to assign additional signals that could not be assigned based on experiments alone, for example signals of two non-equivalent molecules in the unit cell of some of the amino acids.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139916929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of in situ high resolution NMR: Proof-of-principle for a new (spinning) cylindrical mini-pellet approach applied to a Lithium ion battery 原位高分辨率核磁共振的开发:应用于锂离子电池的新型(旋转)圆柱形微型颗粒方法的原理验证
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2023-12-18 DOI: 10.1016/j.ssnmr.2023.101914
Irshad Mohammad , Musa Ali Cambaz , Ago Samoson , Maximilian Fichtner , Raiker Witter
{"title":"Development of in situ high resolution NMR: Proof-of-principle for a new (spinning) cylindrical mini-pellet approach applied to a Lithium ion battery","authors":"Irshad Mohammad ,&nbsp;Musa Ali Cambaz ,&nbsp;Ago Samoson ,&nbsp;Maximilian Fichtner ,&nbsp;Raiker Witter","doi":"10.1016/j.ssnmr.2023.101914","DOIUrl":"10.1016/j.ssnmr.2023.101914","url":null,"abstract":"<div><p><span>Solid-state nuclear magnetic resonance (ssNMR) spectroscopy is a powerful technique for characterizing the local structure and dynamics of battery and other materials. It has been widely used to investigate bulk electrode compounds, electrolytes, and interfaces. Beside common </span><em>ex situ</em> investigations, <em>in situ</em> and <em>operando</em><span> techniques have gained considerable importance for understanding the reaction mechanisms and cell degradation of electrochemical cells.</span></p><p>Herein, we present the recent development of <em>in situ</em><span> magic angle spinning (MAS) NMR methodologies to study batteries with high spectral resolution, setting into context possible advances on this topic. A mini cylindrical cell type insert for 4 mm MAS rotors is introduced here, being demonstrated on a Li/VO</span><sub>2</sub>F electrochemical system, allowing the acquisition of high-resolution <sup>7</sup><span>Li MAS NMR spectra, spinning the electrochemical cell up to 15 kHz.</span></p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138740138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Field-stepwise-swept solid-state 127I NMR of 1,4-diiodobenzene 1,4-二碘苯的场逐步扫描固态127I核磁共振。
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2023-12-01 DOI: 10.1016/j.ssnmr.2023.101905
Kazuhiko Yamada , Tatsuo Kaiho
{"title":"Field-stepwise-swept solid-state 127I NMR of 1,4-diiodobenzene","authors":"Kazuhiko Yamada ,&nbsp;Tatsuo Kaiho","doi":"10.1016/j.ssnmr.2023.101905","DOIUrl":"10.1016/j.ssnmr.2023.101905","url":null,"abstract":"<div><p>Field-stepwise-swept solid-state <sup>127</sup>I NMR experiments of 1,4-diiodobenzene, C<sub>6</sub>H<sub>4</sub>I<sub>2</sub>, applied to a Zeeman-perturbed NQR region, have been presented. A series of QCPMG measurements is performed at <em>T</em><span> = 90 K with resonant frequencies of 271 MHz in the range of magnetic fields from 2.5 T to zero with the interval of 12 mT. The spectral simulation<span>, in which a numerical calculation involves the diagonalization of the combined Zeeman-quadrupolar Hamiltonian, provides quadrupole coupling constant (</span></span><em>C</em><sub>Q</sub>) = 1863(5) MHz and the asymmetry parameter (η<sub>Q</sub>) = 0.04(2). The <sup>127</sup><span>I NQR spectrum is observed at </span><em>T</em> = 90 K, which is consistent in the above experimental results.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138499382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinetics of 1H →31P NMR cross-polarization and dynamics in a layered crystalline α-Sn(IV) phosphate α-Sn(IV)磷酸层状晶体的1H→31P核磁共振交叉极化动力学及动力学
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2023-10-01 DOI: 10.1016/j.ssnmr.2023.101898
Vladimir I. Bakhmutov, Douglas W. Elliott, Hong-Cai Zhou
{"title":"Kinetics of 1H →31P NMR cross-polarization and dynamics in a layered crystalline α-Sn(IV) phosphate","authors":"Vladimir I. Bakhmutov,&nbsp;Douglas W. Elliott,&nbsp;Hong-Cai Zhou","doi":"10.1016/j.ssnmr.2023.101898","DOIUrl":"https://doi.org/10.1016/j.ssnmr.2023.101898","url":null,"abstract":"<div><p>The proton-phosphorus (H–P) cross-polarization (CP) is effective in Sn(HPO<sub>4</sub>)<sub>2</sub>·H<sub>2</sub>O despite of the presence of paramagnetic ion impurities. Polarization constants T<sub>H-P</sub> and <sup>1</sup>H T<sub>1ρ</sub> times are measured in static Sn(HPO<sub>4</sub>)<sub>2</sub>·H<sub>2</sub>O by the kinetic variable-temperature H–P CP experiments. The temperature dependence of the <sup>1</sup>H T<sub>1ρ</sub><span> times is interpreted in terms of proton movements in the interlayer space occurring between the phosphate groups<span><span> without participation of the water molecules. The process requires an activation energy of 8.7 ± 0.7 kcal/mol. The </span>MAS effect on the </span></span><sup>1</sup>H T<sub>1ρ</sub> times is shown and discussed.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49857793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solid-state NMR of organic molecules: Characterising solid-state form 有机分子的固态核磁共振:表征固态形式
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2023-08-01 DOI: 10.1016/j.ssnmr.2023.101876
Steven P. Brown, Yongchao Su
{"title":"Solid-state NMR of organic molecules: Characterising solid-state form","authors":"Steven P. Brown,&nbsp;Yongchao Su","doi":"10.1016/j.ssnmr.2023.101876","DOIUrl":"10.1016/j.ssnmr.2023.101876","url":null,"abstract":"","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9975590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High resolution solid-state NMR on the desktop 高分辨率固态核磁共振在桌面上
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2023-08-01 DOI: 10.1016/j.ssnmr.2023.101884
Ke Xu , Fettah Aldudak , Oliver Pecher , Marco Braun , Andreas Neuberger , Holger Foysi , Jörn Schmedt auf der Günne
{"title":"High resolution solid-state NMR on the desktop","authors":"Ke Xu ,&nbsp;Fettah Aldudak ,&nbsp;Oliver Pecher ,&nbsp;Marco Braun ,&nbsp;Andreas Neuberger ,&nbsp;Holger Foysi ,&nbsp;Jörn Schmedt auf der Günne","doi":"10.1016/j.ssnmr.2023.101884","DOIUrl":"10.1016/j.ssnmr.2023.101884","url":null,"abstract":"<div><p><span>High-resolution low-field nuclear magnetic resonance (NMR) spectroscopy has found wide application for characterization of liquid compounds because of the low maintenance cost of modern permanent magnets. Solid-state NMR so far is limited to low-resolution measurements of static powders, because of the limited space available in this type of magnet. Magic-angle sample spinning and low-magnetic fields are an attractive combination to achieve high spectral resolution especially for paramagnetic solids. Here we show that magic angle spinning<span> modules can be miniaturized using 3D printing techniques so that high-resolution solid-state NMR in permanent magnets becomes possible. The suggested conical rotor design was developed using </span></span>finite element<span><span> calculations and provides sample spinning frequencies higher than 20 kHz. The setup was tested on various diamagnetic and paramagnetic compounds including paramagnetic battery materials. The only comparable experiments in low-cost magnets known so far, had been done in the early times of magic angle spinning using electromagnets at much lower sample spinning frequency. Our results demonstrate that high-resolution low-field magic-angle-spinning NMR does not require expensive </span>superconducting magnets and that high-resolution solid-state NMR spectra of paramagnetic compounds are feasible. Generally, this could introduce low-field solid-state NMR for abundant nuclei standard as a routine analytical tool.</span></p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9982675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Remembering Shimon Vega: Special issue on solid-state and DNP NMR 纪念Shimon Vega:固态和DNP NMR特刊
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2023-08-01 DOI: 10.1016/j.ssnmr.2023.101885
G. Goobes, P.K. Madhu, A. Goldbourt
{"title":"Remembering Shimon Vega: Special issue on solid-state and DNP NMR","authors":"G. Goobes,&nbsp;P.K. Madhu,&nbsp;A. Goldbourt","doi":"10.1016/j.ssnmr.2023.101885","DOIUrl":"10.1016/j.ssnmr.2023.101885","url":null,"abstract":"","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9988512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spin diffusion in the Phosphorus-31 NMR relaxation in a layered crystalline α-Sn(IV) phosphate contaminated by paramagnetic impurities 顺磁杂质污染层状α-Sn(IV)磷酸盐中磷-31核磁共振弛豫的自旋扩散
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2023-08-01 DOI: 10.1016/j.ssnmr.2023.101875
Vladimir I. Bakhmutov , Douglas W. Elliott , Nattamai Bhuvanesh , Hong-Cai Zhou
{"title":"Spin diffusion in the Phosphorus-31 NMR relaxation in a layered crystalline α-Sn(IV) phosphate contaminated by paramagnetic impurities","authors":"Vladimir I. Bakhmutov ,&nbsp;Douglas W. Elliott ,&nbsp;Nattamai Bhuvanesh ,&nbsp;Hong-Cai Zhou","doi":"10.1016/j.ssnmr.2023.101875","DOIUrl":"10.1016/j.ssnmr.2023.101875","url":null,"abstract":"<div><p>The study of a layered crystalline Sn(IV) phosphate by solid-state NMR has demonstrated that the <sup>31</sup>P T<sub>1</sub><span><span> relaxation of phosphate groups, dependent on spinning rate is completely controlled by the limited </span>spin diffusion<span> to paramagnetic ions found by EPR. The spin-diffusion constant, D(SD), was estimated as 2.04 10</span></span><sup>−14</sup> cm<sup>2</sup>s<sup>−1</sup>. The conclusion was supported by the <sup>31</sup>P T<sub>1</sub><span> time measurements in zirconium phosphate </span><strong>1</strong>–<strong>1</strong><span>, also showing paramagnetic ions and in diamagnetic compound (NH</span><sub>4</sub>)<sub>2</sub>HPO<sub>4</sub>.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10038540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Corrigendum to “Implanted-ion β NMR: A new probe for nanoscience” [Solid State Nucl. Magn. Reson. 68-69 (2015) 1–12] “植入离子βNMR:纳米科学的新探针”勘误表[Solid State Nucl.Magn.Reson.68-69(2015)1-12]
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2023-08-01 DOI: 10.1016/j.ssnmr.2023.101886
W.A. MacFarlane
{"title":"Corrigendum to “Implanted-ion β NMR: A new probe for nanoscience” [Solid State Nucl. Magn. Reson. 68-69 (2015) 1–12]","authors":"W.A. MacFarlane","doi":"10.1016/j.ssnmr.2023.101886","DOIUrl":"10.1016/j.ssnmr.2023.101886","url":null,"abstract":"","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9983841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating particle size effects on NMR spectra of ions diffusing in porous carbons through a mesoscopic model 通过介观模型研究离子在多孔碳中扩散的粒度对核磁共振谱的影响
IF 3.2 3区 化学
Solid state nuclear magnetic resonance Pub Date : 2023-08-01 DOI: 10.1016/j.ssnmr.2023.101883
Anagha Sasikumar , Céline Merlet
{"title":"Investigating particle size effects on NMR spectra of ions diffusing in porous carbons through a mesoscopic model","authors":"Anagha Sasikumar ,&nbsp;Céline Merlet","doi":"10.1016/j.ssnmr.2023.101883","DOIUrl":"10.1016/j.ssnmr.2023.101883","url":null,"abstract":"<div><p><span><span>Characterizing ion adsorption and diffusion in porous carbons is essential to understand the performance of such materials in a range of key technologies such as energy storage and capacitive deionisation. Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful technique to get insights in these systems thanks to its ability to distinguish between bulk and adsorbed species and to its sensitivity to dynamic phenomena. Nevertheless, a clear interpretation of the experimental results is sometimes rendered difficult by the various factors affecting </span>NMR spectra<span>. A mesoscopic model to predict NMR spectra of ions diffusing in carbon particles is adapted to include dynamic exchange between the intra-particle space and the bulk electrolyte surrounding the particle. A systematic study of the particle size effect on the NMR spectra for different distributions of magnetic environments in the porous carbons is conducted. The model demonstrates the importance of considering a range of magnetic environments, instead of a single chemical shift value corresponding to adsorbed species, and of including a range of exchange rates (between in and out of the particle), instead of a single timescale, to predict realistic NMR spectra. Depending on the </span></span>pore size distribution<span> of the carbon particle and the ratio between bulk and adsorbed species, both the NMR linewidth and peak positions can be largely influenced by the particle size.</span></p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9984738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信