Stem Cell Reports最新文献

筛选
英文 中文
Functionally redundant roles of ID family proteins in spermatogonial stem cells. ID家族蛋白在精原干细胞中的功能冗余作用
IF 5.9 2区 医学
Stem Cell Reports Pub Date : 2024-10-08 Epub Date: 2024-09-26 DOI: 10.1016/j.stemcr.2024.08.011
Hue M La, Ai-Leen Chan, Ashlee M Hutchinson, Bianka Y M Su, Fernando J Rossello, Ralf B Schittenhelm, Robin M Hobbs
{"title":"Functionally redundant roles of ID family proteins in spermatogonial stem cells.","authors":"Hue M La, Ai-Leen Chan, Ashlee M Hutchinson, Bianka Y M Su, Fernando J Rossello, Ralf B Schittenhelm, Robin M Hobbs","doi":"10.1016/j.stemcr.2024.08.011","DOIUrl":"10.1016/j.stemcr.2024.08.011","url":null,"abstract":"<p><p>Spermatogonial stem cells (SSCs) are essential for sustained sperm production, but SSC regulatory mechanisms and markers remain poorly defined. Studies have suggested that the Id family transcriptional regulator Id4 is expressed in SSCs and involved in SSC maintenance. Here, we used reporter and knockout models to define the expression and function of Id4 in the adult male germline. Within the spermatogonial pool, Id4 reporter expression and inhibitor of DNA-binding 4 (ID4) protein are found throughout the GFRα1+ fraction, comprising the self-renewing population. However, Id4 deletion is tolerated by adult SSCs while revealing roles in meiotic spermatocytes. Cultures of undifferentiated spermatogonia could be established following Id4 deletion. Importantly, ID4 loss in undifferentiated spermatogonia triggers ID3 upregulation, and both ID proteins associate with transcription factor partner TCF3 in wild-type cells. Combined inhibition of IDs in cultured spermatogonia disrupts the stem cell state and blocks proliferation. Our data therefore demonstrate critical but functionally redundant roles of IDs in SSC function.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1379-1388"},"PeriodicalIF":5.9,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561458/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EZH2 Protects Glioma Stem Cells from Radiation-Induced Cell Death in a MELK/FOXM1-Dependent Manner. EZH2 以 MELK/FOXM1 依赖性方式保护胶质瘤干细胞免受辐射诱导的细胞死亡。
IF 5.9 2区 医学
Stem Cell Reports Pub Date : 2024-10-08 Epub Date: 2024-09-15 DOI: 10.1016/j.stemcr.2024.09.003
Sung-Hak Kim, Kaushal Joshi, Ravesanker Ezhilarasan, Toshia R Myers, Jason Siu, Chunyu Gu, Mariko Nakano-Okuno, David Taylor, Mutsuko Minata, Erik P Sulman, Jeongwu Lee, Krishna P L Bhat, Anna Elisabetta Salcini, Ichiro Nakano
{"title":"EZH2 Protects Glioma Stem Cells from Radiation-Induced Cell Death in a MELK/FOXM1-Dependent Manner.","authors":"Sung-Hak Kim, Kaushal Joshi, Ravesanker Ezhilarasan, Toshia R Myers, Jason Siu, Chunyu Gu, Mariko Nakano-Okuno, David Taylor, Mutsuko Minata, Erik P Sulman, Jeongwu Lee, Krishna P L Bhat, Anna Elisabetta Salcini, Ichiro Nakano","doi":"10.1016/j.stemcr.2024.09.003","DOIUrl":"10.1016/j.stemcr.2024.09.003","url":null,"abstract":"","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":"19 10","pages":"1516"},"PeriodicalIF":5.9,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561452/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142401377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rod-shaped micropatterning enhances the electrophysiological maturation of cardiomyocytes derived from human induced pluripotent stem cells. 棒状微图案化可增强人类诱导多能干细胞心肌细胞的电生理成熟。
IF 5.9 2区 医学
Stem Cell Reports Pub Date : 2024-10-08 Epub Date: 2024-09-19 DOI: 10.1016/j.stemcr.2024.08.005
Zeina R Al Sayed, Charlène Jouve, Magali Seguret, Andrea Ruiz-Velasco, Céline Pereira, David-Alexandre Trégouët, Jean-Sébastien Hulot
{"title":"Rod-shaped micropatterning enhances the electrophysiological maturation of cardiomyocytes derived from human induced pluripotent stem cells.","authors":"Zeina R Al Sayed, Charlène Jouve, Magali Seguret, Andrea Ruiz-Velasco, Céline Pereira, David-Alexandre Trégouët, Jean-Sébastien Hulot","doi":"10.1016/j.stemcr.2024.08.005","DOIUrl":"10.1016/j.stemcr.2024.08.005","url":null,"abstract":"<p><p>Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer great potential for drug screening and disease modeling. However, hiPSC-CMs remain immature compared to the adult cardiac cells. Cardiomyocytes isolated from adult human hearts have a typical rod-shaped morphology. Here, we sought to develop a simple method to improve the architectural maturity of hiPSC-CMs by using a rod-shaped cell micropatterned substrate consisting of repeated rectangles (120 μm long × 30 μm wide) surrounded by a chemical cell repellent. The generated hiPSC-CMs exhibit numerous characteristics similar to adult human cardiomyocytes, including elongated cell shape, well-organized sarcomeres, and increased myofibril density. The improvement in structural properties correlates with the enrichment of late ventricular action potentials characterized by a more hyperpolarized resting membrane potential and an enhanced depolarization consistent with an increased sodium current density. The more mature hiPSC-CMs generated by this method may serve as a useful in vitro platform for characterizing cardiovascular disease.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1417-1431"},"PeriodicalIF":5.9,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561463/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142295961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SeqVerify: An accessible analysis tool for cell line genomic integrity, contamination, and gene editing outcomes. SeqVerify:细胞系基因组完整性、污染和基因编辑结果的便捷分析工具。
IF 5.9 2区 医学
Stem Cell Reports Pub Date : 2024-10-08 Epub Date: 2024-09-12 DOI: 10.1016/j.stemcr.2024.08.004
Merrick Pierson Smela, Valerio Pepe, Steven Lubbe, Evangelos Kiskinis, George M Church
{"title":"SeqVerify: An accessible analysis tool for cell line genomic integrity, contamination, and gene editing outcomes.","authors":"Merrick Pierson Smela, Valerio Pepe, Steven Lubbe, Evangelos Kiskinis, George M Church","doi":"10.1016/j.stemcr.2024.08.004","DOIUrl":"10.1016/j.stemcr.2024.08.004","url":null,"abstract":"<p><p>Over the last decade, advances in genome editing and pluripotent stem cell (PSC) culture have let researchers generate edited PSC lines to study a wide variety of biological questions. However, abnormalities in cell lines such as aneuploidy, mutations, on-target and off-target editing errors, and microbial contamination can arise during PSC culture or due to undesired editing outcomes. The ongoing decline of next-generation sequencing prices has made whole-genome sequencing (WGS) a promising option for detecting these abnormalities. However, this approach has been held back by a lack of easily usable data analysis software. Here, we present SeqVerify, a computational pipeline designed to take raw WGS data and a list of intended genome edits, and verify that the edits are present and that there are no abnormalities. We anticipate that SeqVerify will be a useful tool for researchers generating edited PSCs, and more broadly, for cell line quality control in general.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1505-1515"},"PeriodicalIF":5.9,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561455/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142295963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of adeno-associated viral vectors targeting cardiac fibroblasts for efficient in vivo cardiac reprogramming. 开发针对心脏成纤维细胞的腺相关病毒载体,实现高效的体内心脏重编程。
IF 5.9 2区 医学
Stem Cell Reports Pub Date : 2024-10-08 Epub Date: 2024-09-05 DOI: 10.1016/j.stemcr.2024.08.002
Koji Nakano, Taketaro Sadahiro, Ryo Fujita, Mari Isomi, Yuto Abe, Yu Yamada, Tatsuya Akiyama, Seiichiro Honda, Brent A French, Hiroaki Mizukami, Masaki Ieda
{"title":"Development of adeno-associated viral vectors targeting cardiac fibroblasts for efficient in vivo cardiac reprogramming.","authors":"Koji Nakano, Taketaro Sadahiro, Ryo Fujita, Mari Isomi, Yuto Abe, Yu Yamada, Tatsuya Akiyama, Seiichiro Honda, Brent A French, Hiroaki Mizukami, Masaki Ieda","doi":"10.1016/j.stemcr.2024.08.002","DOIUrl":"10.1016/j.stemcr.2024.08.002","url":null,"abstract":"<p><p>Overexpression of cardiac reprogramming factors, including GATA4, HAND2, TBX5, and MEF2C (GHT/M), can directly reprogram cardiac fibroblasts (CFs) into induced cardiomyocytes (iCMs). Adeno-associated virus (AAV) vectors are widely used clinically, and vectors targeting cardiomyocytes (CMs) have been extensively studied. However, safe and efficient AAV vectors targeting CFs for in vivo cardiac reprogramming remain elusive. Therefore, we screened multiple AAV capsids and promoters to develop efficient and safe CF-targeting AAV vectors for in vivo cardiac reprogramming. AAV-DJ capsids containing periostin promoter (AAV-DJ-Postn) strongly and specifically expressed transgenes in resident CFs in mice after myocardial infarction (MI). Lineage tracing revealed that AAV-DJ-Postn vectors expressing GHT/M reprogrammed CFs into iCMs, which was further increased 2-fold using activated MEF2C via the fusion of the powerful MYOD transactivation domain (M-TAD) with GHT (AAV-DJ-Postn-GHT/M-TAD). AAV-DJ-Postn-GHT/M-TAD injection improved cardiac function and reduced fibrosis after MI. Overall, we developed new AAV vectors that target CFs for cardiac reprogramming.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1389-1398"},"PeriodicalIF":5.9,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561454/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic spatiotemporal activation of a pervasive neurogenic competence in striatal astrocytes supports continuous neurogenesis following injury. 纹状体星形胶质细胞中普遍存在的神经源能力在时空上的动态激活支持损伤后的持续神经发生。
IF 5.9 2区 医学
Stem Cell Reports Pub Date : 2024-10-08 Epub Date: 2024-09-19 DOI: 10.1016/j.stemcr.2024.08.006
Marco Fogli, Giulia Nato, Philip Greulich, Jacopo Pinto, Marta Ribodino, Gregorio Valsania, Paolo Peretto, Annalisa Buffo, Federico Luzzati
{"title":"Dynamic spatiotemporal activation of a pervasive neurogenic competence in striatal astrocytes supports continuous neurogenesis following injury.","authors":"Marco Fogli, Giulia Nato, Philip Greulich, Jacopo Pinto, Marta Ribodino, Gregorio Valsania, Paolo Peretto, Annalisa Buffo, Federico Luzzati","doi":"10.1016/j.stemcr.2024.08.006","DOIUrl":"10.1016/j.stemcr.2024.08.006","url":null,"abstract":"<p><p>Adult neural stem cells (NSCs) are conventionally regarded as rare cells restricted to two niches: the subventricular zone (SVZ) and the subgranular zone. Parenchymal astrocytes (ASs) can also contribute to neurogenesis after injury; however, the prevalence, distribution, and behavior of these latent NSCs remained elusive. To tackle these issues, we reconstructed the spatiotemporal pattern of striatal (STR) AS neurogenic activation after excitotoxic lesion in mice. Our results indicate that neurogenic potential is widespread among STR ASs but is focally activated at the lesion border, where it associates with different reactive AS subtypes. In this region, similarly to canonical niches, steady-state neurogenesis is ensured by the continuous stochastic activation of local ASs. Activated ASs quickly return to quiescence, while their progeny transiently expand following a stochastic behavior that features an acceleration in differentiation propensity. Notably, STR AS activation rate matches that of SVZ ASs indicating a comparable prevalence of NSC potential.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1432-1450"},"PeriodicalIF":5.9,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561465/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142295960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Medium acidosis drives cardiac differentiation during mesendoderm cell fate specification from human pluripotent stem cells. 在人类多能干细胞的中胚层细胞命运分化过程中,培养基酸中毒驱动了心脏分化。
IF 5.9 2区 医学
Stem Cell Reports Pub Date : 2024-09-10 Epub Date: 2024-08-22 DOI: 10.1016/j.stemcr.2024.07.012
Weiwei Liu, Hsun-Ting Hsieh, Ziqing He, Xia Xiao, Chengcheng Song, En Xin Lee, Ji Dong, Chon Lok Lei, Jiaxian Wang, Guokai Chen
{"title":"Medium acidosis drives cardiac differentiation during mesendoderm cell fate specification from human pluripotent stem cells.","authors":"Weiwei Liu, Hsun-Ting Hsieh, Ziqing He, Xia Xiao, Chengcheng Song, En Xin Lee, Ji Dong, Chon Lok Lei, Jiaxian Wang, Guokai Chen","doi":"10.1016/j.stemcr.2024.07.012","DOIUrl":"10.1016/j.stemcr.2024.07.012","url":null,"abstract":"<p><p>Effective lineage-specific differentiation is essential to fulfilling the great potentials of human pluripotent stem cells (hPSCs). In this report, we investigate how modulation of medium pH and associated metabolic changes influence mesendoderm differentiation from hPSCs. We show that daily medium pH fluctuations are critical for the heterogeneity of cell fates in the absence of exogenous inducers. Acidic environment alone leads to cardiomyocyte generation without other signaling modulators. In contrast, medium alkalinization is inhibitory to cardiac fate even in the presence of classic cardiac inducers. We then demonstrate that acidic environment suppresses glycolysis to facilitate cardiac differentiation, while alkaline condition promotes glycolysis and diverts the differentiation toward other cell types. We further show that glycolysis inhibition or AMPK activation can rescue cardiac differentiation under alkalinization, and glycolysis inhibition alone can drive cardiac cell fate. This study highlights that pH changes remodel metabolic patterns and modulate signaling pathways to control cell fate.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1304-1319"},"PeriodicalIF":5.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411300/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
mTORC1 mediates the expansion of hematopoietic stem and progenitor cells through ribosome biogenesis protein Urb2 in zebrafish. 在斑马鱼体内,mTORC1 通过核糖体生物生成蛋白 Urb2 介导造血干细胞和祖细胞的扩增。
IF 5.9 2区 医学
Stem Cell Reports Pub Date : 2024-09-10 Epub Date: 2024-08-22 DOI: 10.1016/j.stemcr.2024.07.011
Wenming Huang, Yu Yue, Weifeng Hao, Zhenan Zhang, Pengcheng Cai, Deqin Yang
{"title":"mTORC1 mediates the expansion of hematopoietic stem and progenitor cells through ribosome biogenesis protein Urb2 in zebrafish.","authors":"Wenming Huang, Yu Yue, Weifeng Hao, Zhenan Zhang, Pengcheng Cai, Deqin Yang","doi":"10.1016/j.stemcr.2024.07.011","DOIUrl":"10.1016/j.stemcr.2024.07.011","url":null,"abstract":"<p><p>Mammalian target of rapamycin (mTOR) serves as the key sensor to control protein synthesis, cell growth, and survival. Despite mTOR is reported to regulate hematopoietic stem and progenitor cell (HSPC) engraftment and multiple-lineage hematopoiesis in mice, the roles of unique mTOR complexes (mTORCs) in early HSPC development and HSPC pool formation have not been adequately elucidated. Here, we uncover that mTORC1 is essential for early HSPC expansion in zebrafish. mTORC1 signaling was highly activated in definitive HSPCs during the emerging and expanding stages. Pharmacological or genetic inactivation of mTORC1 would cause defective HSPC expansion and migration due to disrupted cell proliferation. Interestingly, mTORC2 is dispensable for early HSPC development. Ribosome biogenesis protein Urb2 was downregulated upon mTORC1 inhibition, and urb2 overexpression partially rescued the hematopoietic defects in mTORC1-deficient embryos. These data demonstrate that mTORC1 signaling regulates early HSPC expansion through Urb2, and this work will deepen our understanding of mTOR in different physiological processes.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1277-1288"},"PeriodicalIF":5.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411303/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient generation of human immune system rats using human CD34+ cells. 利用人体 CD34+ 细胞高效生成人体免疫系统大鼠。
IF 5.9 2区 医学
Stem Cell Reports Pub Date : 2024-09-10 Epub Date: 2024-08-15 DOI: 10.1016/j.stemcr.2024.07.005
Séverine Ménoret, Florence Renart-Depontieu, Gaelle Martin, Kader Thiam, Ignacio Anegon
{"title":"Efficient generation of human immune system rats using human CD34<sup>+</sup> cells.","authors":"Séverine Ménoret, Florence Renart-Depontieu, Gaelle Martin, Kader Thiam, Ignacio Anegon","doi":"10.1016/j.stemcr.2024.07.005","DOIUrl":"10.1016/j.stemcr.2024.07.005","url":null,"abstract":"<p><p>Human immune system (HIS) mice generated using human CD34<sup>+</sup> hematopoietic stem cells serve as a pivotal model for the in vivo evaluation of immunotherapies for humans. Yet, HIS mice possess certain limitations. Rats, due to their size and comprehensive immune system, hold promise for translational experiments. Here, we describe an efficacious method for long-term immune humanization, through intrahepatic injection of hCD34<sup>+</sup> cells in newborn immunodeficient rats expressing human SIRPα. In contrast to HIS mice and similar to humans, HIS rats showed in blood a predominance of T cells, followed by B cells. Immune humanization was also high in central and secondary lymphoid organs. HIS rats treated with the anti-human CD3 antibody were depleted of human T cells, and human cytokines were detected in sera. We describe for the first time a method to efficiently generate HIS rats. HIS rats have the potential to be a useful model for translational immunology.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1255-1263"},"PeriodicalIF":5.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411320/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141996450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissecting the impact of differentiation stage, replicative history, and cell type composition on epigenetic clocks. 剖析分化阶段、复制历史和细胞类型组成对表观遗传时钟的影响。
IF 5.9 2区 医学
Stem Cell Reports Pub Date : 2024-09-10 Epub Date: 2024-08-22 DOI: 10.1016/j.stemcr.2024.07.009
Rebecca Gorelov, Aaron Weiner, Aaron Huebner, Masaki Yagi, Amin Haghani, Robert Brooke, Steve Horvath, Konrad Hochedlinger
{"title":"Dissecting the impact of differentiation stage, replicative history, and cell type composition on epigenetic clocks.","authors":"Rebecca Gorelov, Aaron Weiner, Aaron Huebner, Masaki Yagi, Amin Haghani, Robert Brooke, Steve Horvath, Konrad Hochedlinger","doi":"10.1016/j.stemcr.2024.07.009","DOIUrl":"10.1016/j.stemcr.2024.07.009","url":null,"abstract":"<p><p>Epigenetic clocks, built on DNA methylation patterns of bulk tissues, are powerful age predictors, but their biological basis remains incompletely understood. Here, we conducted a comparative analysis of epigenetic age in murine muscle, epithelial, and blood cell types across lifespan. Strikingly, our results show that cellular subpopulations within these tissues, including adult stem and progenitor cells as well as their differentiated progeny, exhibit different epigenetic ages. Accordingly, we experimentally demonstrate that clocks can be skewed by age-associated changes in tissue composition. Mechanistically, we provide evidence that the observed variation in epigenetic age among adult stem cells correlates with their proliferative state, and, fittingly, forced proliferation of stem cells leads to increases in epigenetic age. Collectively, our analyses elucidate the impact of cell type composition, differentiation state, and replicative potential on epigenetic age, which has implications for the interpretation of existing clocks and should inform the development of more sensitive clocks.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1242-1254"},"PeriodicalIF":5.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信