Stem Cell Reports最新文献

筛选
英文 中文
Targeting glioblastoma with a brain-penetrant drug that impairs brain tumor stem cells via NLE1-Notch1 complex. 通过 NLE1-Notch1 复合物损害脑肿瘤干细胞的脑穿刺药物靶向胶质母细胞瘤。
IF 5.9 2区 医学
Stem Cell Reports Pub Date : 2024-11-12 Epub Date: 2024-10-17 DOI: 10.1016/j.stemcr.2024.09.007
Audrey Burban, Ahmad Sharanek, Aldo Hernandez-Corchado, Hamed S Najafabadi, Vahab D Soleimani, Arezu Jahani-Asl
{"title":"Targeting glioblastoma with a brain-penetrant drug that impairs brain tumor stem cells via NLE1-Notch1 complex.","authors":"Audrey Burban, Ahmad Sharanek, Aldo Hernandez-Corchado, Hamed S Najafabadi, Vahab D Soleimani, Arezu Jahani-Asl","doi":"10.1016/j.stemcr.2024.09.007","DOIUrl":"10.1016/j.stemcr.2024.09.007","url":null,"abstract":"<p><p>Brain tumor stem cells (BTSCs) are a population of self-renewing malignant stem cells that play an important role in glioblastoma tumor hierarchy and contribute to tumor growth, therapeutic resistance, and tumor relapse. Thus, targeting of BTSCs within the bulk of tumors represents a crucial therapeutic strategy. Here, we report that edaravone is a potent drug that impairs BTSCs in glioblastoma. We show that edaravone inhibits the self-renewal and growth of BTSCs harboring a diverse range of oncogenic mutations without affecting non-oncogenic neural stem cells. Global gene expression analysis revealed that edaravone significantly alters BTSC transcriptome and attenuates the expression of a large panel of genes involved in cell cycle progression, stemness, and DNA repair mechanisms. Mechanistically, we discovered that edaravone directly targets Notchless homolog 1 (NLE1) and impairs Notch signaling pathway, alters the expression of stem cell markers, and sensitizes BTSC response to ionizing radiation (IR)-induced cell death. Importantly, we show that edaravone treatment in preclinical models delays glioblastoma tumorigenesis, sensitizes their response to IR, and prolongs the lifespan of animals. Our data suggest that repurposing of edaravone is a promising therapeutic strategy for patients with glioblastoma.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1534-1547"},"PeriodicalIF":5.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guardians of the mind: Calvarial stem cells and brain border immunity. 心灵的守护者钙质干细胞与脑边界免疫力
IF 5.9 2区 医学
Stem Cell Reports Pub Date : 2024-11-12 Epub Date: 2024-10-31 DOI: 10.1016/j.stemcr.2024.10.002
Bo Li
{"title":"Guardians of the mind: Calvarial stem cells and brain border immunity.","authors":"Bo Li","doi":"10.1016/j.stemcr.2024.10.002","DOIUrl":"10.1016/j.stemcr.2024.10.002","url":null,"abstract":"<p><p>Calvarial bones safeguard the brain and are interconnected by immovable joints termed sutures, which function as growth centers for skull morphogenesis and stem cell niches. Recent years have witnessed paradigm shifts in this field, highlighting the essential roles of calvarial stem cells (CSCs), sutures, and surrounding structures in neuroimmune crosstalk and neurocognitive restoration.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1520-1523"},"PeriodicalIF":5.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The urgent need for clear and concise regulations on exosome-based interventions. 亟需对基于外泌体的干预措施制定简明扼要的规定。
IF 5.9 2区 医学
Stem Cell Reports Pub Date : 2024-11-12 Epub Date: 2024-10-24 DOI: 10.1016/j.stemcr.2024.09.008
Misao Fujita, Taichi Hatta, Tsunakuni Ikka, Tatsuo Onishi
{"title":"The urgent need for clear and concise regulations on exosome-based interventions.","authors":"Misao Fujita, Taichi Hatta, Tsunakuni Ikka, Tatsuo Onishi","doi":"10.1016/j.stemcr.2024.09.008","DOIUrl":"10.1016/j.stemcr.2024.09.008","url":null,"abstract":"<p><p>Turner and colleagues recently argued that countries with unclear laws and regulations regarding stem cells, exosomes, and other regenerative medicine products should develop and enforce more comprehensive regulatory structures. We fully agree with this opinion and discuss that failure to do so may lead to troubling predicaments, such as the Japanese cases, where patients are at risk of serious complications or even death.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1517-1519"},"PeriodicalIF":5.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transplantation of human pluripotent stem cell-derived retinal sheet in a primate model of macular hole. 在灵长类动物黄斑孔模型中移植人类多能干细胞衍生视网膜片。
IF 5.9 2区 医学
Stem Cell Reports Pub Date : 2024-11-12 Epub Date: 2024-10-03 DOI: 10.1016/j.stemcr.2024.09.002
Yasuaki Iwama, Yasuko Sugase-Miyamoto, Kenta Onoue, Hirofumi Uyama, Keiji Matsuda, Kazuko Hayashi, Ryutaro Akiba, Tomohiro Masuda, Satoshi Yokota, Shigenobu Yonemura, Kohji Nishida, Masayo Takahashi, Yasuo Kurimoto, Michiko Mandai
{"title":"Transplantation of human pluripotent stem cell-derived retinal sheet in a primate model of macular hole.","authors":"Yasuaki Iwama, Yasuko Sugase-Miyamoto, Kenta Onoue, Hirofumi Uyama, Keiji Matsuda, Kazuko Hayashi, Ryutaro Akiba, Tomohiro Masuda, Satoshi Yokota, Shigenobu Yonemura, Kohji Nishida, Masayo Takahashi, Yasuo Kurimoto, Michiko Mandai","doi":"10.1016/j.stemcr.2024.09.002","DOIUrl":"10.1016/j.stemcr.2024.09.002","url":null,"abstract":"<p><p>Macular hole (MH) is a retinal break involving the fovea that causes impaired vision. Although advances in vitreoretinal surgical techniques achieve >90% MH closure rate, refractory cases still exist. For such cases, autologous retinal transplantation is an optional therapy showing good anatomic success, but visual improvement is limited and peripheral visual field defects are inevitable after graft harvesting. Here, using a non-human primate model, we evaluated whether human embryonic stem cell-derived retinal organoid (RO) sheet transplantation can be an effective option for treating MH. After transplantation, MH was successfully closed by continuous filling of the MH space with the RO sheet, resulting in improved visual function, although no host-graft synaptic connections were confirmed. Mild xeno-transplantation rejection was controlled by additional focal steroid injections and rod/cone photoreceptors developed in the graft. Overall, our findings suggest pluripotent stem cell-derived RO sheet transplantation as a practical option for refractory MH treatment.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1524-1533"},"PeriodicalIF":5.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Validation of non-destructive morphology-based selection of cerebral cortical organoids by paired morphological and single-cell RNA-seq analyses. 通过配对形态学和单细胞RNA-seq分析验证基于非破坏性形态学的大脑皮质有器官选择。
IF 5.9 2区 医学
Stem Cell Reports Pub Date : 2024-11-12 Epub Date: 2024-10-10 DOI: 10.1016/j.stemcr.2024.09.005
Megumi Ikeda, Daisuke Doi, Hayao Ebise, Yuki Ozaki, Misaki Fujii, Tetsuhiro Kikuchi, Kenji Yoshida, Jun Takahashi
{"title":"Validation of non-destructive morphology-based selection of cerebral cortical organoids by paired morphological and single-cell RNA-seq analyses.","authors":"Megumi Ikeda, Daisuke Doi, Hayao Ebise, Yuki Ozaki, Misaki Fujii, Tetsuhiro Kikuchi, Kenji Yoshida, Jun Takahashi","doi":"10.1016/j.stemcr.2024.09.005","DOIUrl":"10.1016/j.stemcr.2024.09.005","url":null,"abstract":"<p><p>Organoids, self-organized cell aggregates, contribute significantly to developing disease models and cell-based therapies. Organoid-to-organoid variations, however, are inevitable despite the use of the latest differentiation protocols. Here, we focused on the morphology of organoids formed in a cerebral organoid differentiation culture and assessed their cellular compositions by single-cell RNA sequencing analysis. The data revealed that organoids primarily composed of non-neuronal cells, such as those from the neural crest and choroid plexus, showed unique morphological features. Moreover, we demonstrate that non-destructive morphological analysis can accurately distinguish organoids composed of cerebral cortical tissues from other cerebral tissues, thus enhancing experimental accuracy and reliability to ensure the safety of cell-based therapies.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1635-1646"},"PeriodicalIF":5.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerated mitochondrial dynamics promote spermatogonial differentiation. 线粒体动力学的加速促进了精原细胞的分化。
IF 5.9 2区 医学
Stem Cell Reports Pub Date : 2024-11-12 Epub Date: 2024-10-10 DOI: 10.1016/j.stemcr.2024.09.006
Zhaoran Zhang, Junru Miao, Hanben Wang, Izza Ali, Duong Nguyen, Wei Chen, Yuan Wang
{"title":"Accelerated mitochondrial dynamics promote spermatogonial differentiation.","authors":"Zhaoran Zhang, Junru Miao, Hanben Wang, Izza Ali, Duong Nguyen, Wei Chen, Yuan Wang","doi":"10.1016/j.stemcr.2024.09.006","DOIUrl":"10.1016/j.stemcr.2024.09.006","url":null,"abstract":"<p><p>At different stages of spermatogenesis, germ cell mitochondria differ remarkably in morphology, architecture, and functions. However, it remains elusive how mitochondria change their features during spermatogonial differentiation, which in turn impacts spermatogonial stem cell fate decision. In this study, we observed that mitochondrial fusion and fission were both upregulated during spermatogonial differentiation. As a result, the mitochondrial morphology remained unaltered. Enhanced mitochondrial fusion and fission promoted spermatogonial differentiation, while the deficiency in DRP1-mediated fission led to a stage-specific blockage of spermatogenesis at differentiating spermatogonia. Our data further revealed that increased expression of pro-fusion factor MFN1 upregulated mitochondrial metabolism, whereas DRP1 specifically regulated mitochondrial permeability transition pore opening in differentiating spermatogonia. Taken together, our findings unveil how proper spermatogonial differentiation is precisely controlled by concurrently accelerated and properly balanced mitochondrial fusion and fission in a germ cell stage-specific manner, thereby providing critical insights about mitochondrial contribution to stem cell fate decision.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1548-1563"},"PeriodicalIF":5.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide screening reveals essential roles for HOX genes and imprinted genes during caudal neurogenesis of human embryonic stem cells. 全基因组筛选揭示了 HOX 基因和印记基因在人类胚胎干细胞尾部神经发生过程中的重要作用。
IF 5.9 2区 医学
Stem Cell Reports Pub Date : 2024-11-12 Epub Date: 2024-10-31 DOI: 10.1016/j.stemcr.2024.09.009
Shay Kinreich, Anna Bialer-Tsypin, Ruth Viner-Breuer, Gal Keshet, Roni Suhler, Patrick Siang Lin Lim, Tamar Golan-Lev, Ofra Yanuka, Adi Turjeman, Oren Ram, Eran Meshorer, Dieter Egli, Atilgan Yilmaz, Nissim Benvenisty
{"title":"Genome-wide screening reveals essential roles for HOX genes and imprinted genes during caudal neurogenesis of human embryonic stem cells.","authors":"Shay Kinreich, Anna Bialer-Tsypin, Ruth Viner-Breuer, Gal Keshet, Roni Suhler, Patrick Siang Lin Lim, Tamar Golan-Lev, Ofra Yanuka, Adi Turjeman, Oren Ram, Eran Meshorer, Dieter Egli, Atilgan Yilmaz, Nissim Benvenisty","doi":"10.1016/j.stemcr.2024.09.009","DOIUrl":"10.1016/j.stemcr.2024.09.009","url":null,"abstract":"<p><p>Mapping the essential pathways for neuronal differentiation can uncover new therapeutics and models for neurodevelopmental disorders. We thus utilized a genome-wide loss-of-function library in haploid human embryonic stem cells, differentiated into caudal neuronal cells. We show that essential genes for caudal neurogenesis are enriched for secreted and membrane proteins and that a large group of neurological conditions, including neurodegenerative disorders, manifest early neuronal phenotypes. Furthermore, essential transcription factors are enriched with homeobox (HOX) genes demonstrating synergistic regulation and surprising non-redundant functions between HOXA6 and HOXB6 paralogs. Moreover, we establish the essentialome of imprinted genes during neurogenesis, demonstrating that maternally expressed genes are non-essential in pluripotent cells and their differentiated germ layers, yet several are essential for neuronal development. These include Beckwith-Wiedemann syndrome- and Angelman syndrome-related genes, for which we suggest a novel regulatory pathway. Overall, our work identifies essential pathways for caudal neuronal differentiation and stage-specific phenotypes of neurological disorders.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1598-1619"},"PeriodicalIF":5.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breaking the burst: Unveiling mechanisms behind fragmented network bursts in patient-derived neurons. 打破爆发:揭示患者神经元碎片化网络爆发背后的机制
IF 5.9 2区 医学
Stem Cell Reports Pub Date : 2024-11-12 Epub Date: 2024-10-03 DOI: 10.1016/j.stemcr.2024.09.001
Nina Doorn, Eva J H F Voogd, Marloes R Levers, Michel J A M van Putten, Monica Frega
{"title":"Breaking the burst: Unveiling mechanisms behind fragmented network bursts in patient-derived neurons.","authors":"Nina Doorn, Eva J H F Voogd, Marloes R Levers, Michel J A M van Putten, Monica Frega","doi":"10.1016/j.stemcr.2024.09.001","DOIUrl":"10.1016/j.stemcr.2024.09.001","url":null,"abstract":"<p><p>Fragmented network bursts (NBs) are observed as a phenotypic driver in many patient-derived neuronal networks on multi-electrode arrays (MEAs), but the pathophysiological mechanisms underlying this phenomenon are unknown. Here, we used our previously developed biophysically detailed in silico model to investigate these mechanisms. Fragmentation of NBs in our model simulations occurred only when the level of short-term synaptic depression (STD) was enhanced, suggesting that STD is a key player. Experimental validation with Dynasore, an STD enhancer, induced fragmented NBs in healthy neuronal networks in vitro. Additionally, we showed that strong asynchronous neurotransmitter release, NMDA currents, or short-term facilitation (STF) can support the emergence of multiple fragments in NBs by producing excitation that persists after high-frequency firing stops. Our results provide important insights into disease mechanisms and potential pharmaceutical targets for neurological disorders modeled using human induced pluripotent stem cell (hiPSC)-derived neurons.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1583-1597"},"PeriodicalIF":5.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural crest precursors from the skin are the primary source of directly reprogrammed neurons. 来自皮肤的神经嵴前体是直接重编程神经元的主要来源。
IF 5.9 2区 医学
Stem Cell Reports Pub Date : 2024-11-12 Epub Date: 2024-10-31 DOI: 10.1016/j.stemcr.2024.10.003
Justin J Belair-Hickey, Ahmed Fahmy, Wenbo Zhang, Rifat S Sajid, Brenda L K Coles, Michael W Salter, Derek van der Kooy
{"title":"Neural crest precursors from the skin are the primary source of directly reprogrammed neurons.","authors":"Justin J Belair-Hickey, Ahmed Fahmy, Wenbo Zhang, Rifat S Sajid, Brenda L K Coles, Michael W Salter, Derek van der Kooy","doi":"10.1016/j.stemcr.2024.10.003","DOIUrl":"10.1016/j.stemcr.2024.10.003","url":null,"abstract":"<p><p>Direct reprogramming involves the conversion of differentiated cell types without returning to an earlier developmental state. Here, we explore how heterogeneity in developmental lineage and maturity of the starting cell population contributes to direct reprogramming using the conversion of murine fibroblasts into neurons. Our hypothesis is that a single lineage of cells contributes to most reprogramming and that a rare elite precursor with intrinsic bias is the source of reprogrammed neurons. We find that nearly all reprogrammed neurons are derived from the neural crest (NC) lineage. Moreover, when rare proliferating NC precursors are selectively ablated, there is a large reduction in the number of reprogrammed neurons. Previous interpretations of this paradigm are that it demonstrates a cell fate conversion across embryonic germ layers (mesoderm to ectoderm). Our interpretation is that this is actually directed differentiation of a neural lineage stem cell in the skin that has intrinsic bias to produce neuronal progeny.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1620-1634"},"PeriodicalIF":5.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lineage-specific dynamics of loss of X upregulation during inactive-X reactivation. 无活性-X 再激活过程中 X 缺失上调的特定系动态。
IF 5.9 2区 医学
Stem Cell Reports Pub Date : 2024-11-12 Epub Date: 2024-10-31 DOI: 10.1016/j.stemcr.2024.10.001
Hemant Chandru Naik, Deepshikha Chandel, Sudeshna Majumdar, Maniteja Arava, Runumi Baro, Harshavardhan Bv, Kishore Hari, Parichitran Ayyamperumal, Avinchal Manhas, Mohit Kumar Jolly, Srimonta Gayen
{"title":"Lineage-specific dynamics of loss of X upregulation during inactive-X reactivation.","authors":"Hemant Chandru Naik, Deepshikha Chandel, Sudeshna Majumdar, Maniteja Arava, Runumi Baro, Harshavardhan Bv, Kishore Hari, Parichitran Ayyamperumal, Avinchal Manhas, Mohit Kumar Jolly, Srimonta Gayen","doi":"10.1016/j.stemcr.2024.10.001","DOIUrl":"10.1016/j.stemcr.2024.10.001","url":null,"abstract":"<p><p>In mammals, X chromosome dosage is balanced between sexes through the silencing of one X chromosome in females. Recent single-cell RNA sequencing analysis demonstrated that the inactivation of the X chromosome is accompanied by the upregulation of the active X chromosome (Xa) during mouse embryogenesis. Here, we have investigated if the reactivation of inactive-X (Xi) leads to the loss of Xa upregulation in different cellular or developmental contexts. We find that while Xi reactivation and loss of Xa upregulation are tightly coupled in mouse embryonic epiblast and induced pluripotent stem cells, that is not the case in germ cells. Moreover, we demonstrate that partial reactivation of Xi in mouse extra-embryonic endoderm stem cells and human B cells does not result in the loss of Xa upregulation. Finally, we have established a mathematical model for the transcriptional coordination of two X chromosomes. Together, we conclude that the reactivation of Xi is not always synchronized with the loss of Xa upregulation.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1564-1582"},"PeriodicalIF":5.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信