Stem Cell ReportsPub Date : 2024-12-05DOI: 10.1016/j.stemcr.2024.11.002
Antje K Rottner, Anders Lundin, Songyuan Li, Mike Firth, Marcello Maresca, Grzegorz Sienski
{"title":"Optimized prime editing of the Alzheimer's disease-associated APOE4 mutation.","authors":"Antje K Rottner, Anders Lundin, Songyuan Li, Mike Firth, Marcello Maresca, Grzegorz Sienski","doi":"10.1016/j.stemcr.2024.11.002","DOIUrl":"10.1016/j.stemcr.2024.11.002","url":null,"abstract":"<p><p>Gene editing strategies to safely and robustly modify the Alzheimer's disease-associated APOE4 isoform are still lacking. Prime editing (PE) enables the precise introduction of genetic variants with minimal unintended editing and without donor templates. However, it requires optimization for each target site and has not yet been applied to APOE4 gene editing. Here, we screened PE guide RNA (pegRNA) parameters and PE systems for introducing the APOE4 variant and applied the optimized PE strategy to generate disease-relevant human induced pluripotent stem cell models. We show that introducing a single-nucleotide difference required for APOE4 correction inhibits PE activity. To advance efficient and robust genome engineering of precise genetic variants, we further present a reliable PE enrichment strategy based on diphtheria toxin co-selection. Our work provides an optimized and reproducible genome engineering pipeline to generate APOE4 disease models and outlines novel strategies to accelerate genome editing in cellular disease model generation.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"102372"},"PeriodicalIF":5.9,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142792111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A versatile in vivo platform for reversible control of transgene expression in adult tissues.","authors":"Jumpei Taguchi, Yosuke Yamada, Sho Ohta, Fumie Nakasuka, Takuya Yamamoto, Manabu Ozawa, Yasuhiro Yamada","doi":"10.1016/j.stemcr.2024.11.003","DOIUrl":"10.1016/j.stemcr.2024.11.003","url":null,"abstract":"<p><p>Temporal control of transgenes has advanced biomedical interventions, including in vivo reprogramming, often utilizing the doxycycline (Dox)-mediated Tet-ON system. Here, we developed the Dox-mediated Tet-ON or complementary Tet-OFF counterpart to thoroughly investigate spatial and temporal transgene regulation in adult tissues, revealing inherent limitations and unexpected capabilities of each system. In stark contrast with the Tet-ON system, which was effective only in particular tissues and cell types, primarily epithelial cells, the Tet-OFF system proved capable of gene induction across diverse cell types. Despite the drawback of the Tet-OFF system in inducibility and tunability identified in our study, we demonstrated that use of tetracycline (Tc) effectively addresses these issues, possibly through its pharmacologic properties. Our data suggest that the Tc-mediated Tet-OFF system not only enables more versatile control of transgene expression but also offers a more biocompatible alternative for in vivo applications such as tissue regeneration and organismal rejuvenation.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"102373"},"PeriodicalIF":5.9,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142791708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stem Cell ReportsPub Date : 2024-11-12Epub Date: 2024-10-17DOI: 10.1016/j.stemcr.2024.09.007
Audrey Burban, Ahmad Sharanek, Aldo Hernandez-Corchado, Hamed S Najafabadi, Vahab D Soleimani, Arezu Jahani-Asl
{"title":"Targeting glioblastoma with a brain-penetrant drug that impairs brain tumor stem cells via NLE1-Notch1 complex.","authors":"Audrey Burban, Ahmad Sharanek, Aldo Hernandez-Corchado, Hamed S Najafabadi, Vahab D Soleimani, Arezu Jahani-Asl","doi":"10.1016/j.stemcr.2024.09.007","DOIUrl":"10.1016/j.stemcr.2024.09.007","url":null,"abstract":"<p><p>Brain tumor stem cells (BTSCs) are a population of self-renewing malignant stem cells that play an important role in glioblastoma tumor hierarchy and contribute to tumor growth, therapeutic resistance, and tumor relapse. Thus, targeting of BTSCs within the bulk of tumors represents a crucial therapeutic strategy. Here, we report that edaravone is a potent drug that impairs BTSCs in glioblastoma. We show that edaravone inhibits the self-renewal and growth of BTSCs harboring a diverse range of oncogenic mutations without affecting non-oncogenic neural stem cells. Global gene expression analysis revealed that edaravone significantly alters BTSC transcriptome and attenuates the expression of a large panel of genes involved in cell cycle progression, stemness, and DNA repair mechanisms. Mechanistically, we discovered that edaravone directly targets Notchless homolog 1 (NLE1) and impairs Notch signaling pathway, alters the expression of stem cell markers, and sensitizes BTSC response to ionizing radiation (IR)-induced cell death. Importantly, we show that edaravone treatment in preclinical models delays glioblastoma tumorigenesis, sensitizes their response to IR, and prolongs the lifespan of animals. Our data suggest that repurposing of edaravone is a promising therapeutic strategy for patients with glioblastoma.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1534-1547"},"PeriodicalIF":5.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589194/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stem Cell ReportsPub Date : 2024-11-12Epub Date: 2024-10-31DOI: 10.1016/j.stemcr.2024.10.002
Bo Li
{"title":"Guardians of the mind: Calvarial stem cells and brain border immunity.","authors":"Bo Li","doi":"10.1016/j.stemcr.2024.10.002","DOIUrl":"10.1016/j.stemcr.2024.10.002","url":null,"abstract":"<p><p>Calvarial bones safeguard the brain and are interconnected by immovable joints termed sutures, which function as growth centers for skull morphogenesis and stem cell niches. Recent years have witnessed paradigm shifts in this field, highlighting the essential roles of calvarial stem cells (CSCs), sutures, and surrounding structures in neuroimmune crosstalk and neurocognitive restoration.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1520-1523"},"PeriodicalIF":5.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589192/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transplantation of human pluripotent stem cell-derived retinal sheet in a primate model of macular hole.","authors":"Yasuaki Iwama, Yasuko Sugase-Miyamoto, Kenta Onoue, Hirofumi Uyama, Keiji Matsuda, Kazuko Hayashi, Ryutaro Akiba, Tomohiro Masuda, Satoshi Yokota, Shigenobu Yonemura, Kohji Nishida, Masayo Takahashi, Yasuo Kurimoto, Michiko Mandai","doi":"10.1016/j.stemcr.2024.09.002","DOIUrl":"10.1016/j.stemcr.2024.09.002","url":null,"abstract":"<p><p>Macular hole (MH) is a retinal break involving the fovea that causes impaired vision. Although advances in vitreoretinal surgical techniques achieve >90% MH closure rate, refractory cases still exist. For such cases, autologous retinal transplantation is an optional therapy showing good anatomic success, but visual improvement is limited and peripheral visual field defects are inevitable after graft harvesting. Here, using a non-human primate model, we evaluated whether human embryonic stem cell-derived retinal organoid (RO) sheet transplantation can be an effective option for treating MH. After transplantation, MH was successfully closed by continuous filling of the MH space with the RO sheet, resulting in improved visual function, although no host-graft synaptic connections were confirmed. Mild xeno-transplantation rejection was controlled by additional focal steroid injections and rod/cone photoreceptors developed in the graft. Overall, our findings suggest pluripotent stem cell-derived RO sheet transplantation as a practical option for refractory MH treatment.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1524-1533"},"PeriodicalIF":5.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589285/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The urgent need for clear and concise regulations on exosome-based interventions.","authors":"Misao Fujita, Taichi Hatta, Tsunakuni Ikka, Tatsuo Onishi","doi":"10.1016/j.stemcr.2024.09.008","DOIUrl":"10.1016/j.stemcr.2024.09.008","url":null,"abstract":"<p><p>Turner and colleagues recently argued that countries with unclear laws and regulations regarding stem cells, exosomes, and other regenerative medicine products should develop and enforce more comprehensive regulatory structures. We fully agree with this opinion and discuss that failure to do so may lead to troubling predicaments, such as the Japanese cases, where patients are at risk of serious complications or even death.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1517-1519"},"PeriodicalIF":5.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589178/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Validation of non-destructive morphology-based selection of cerebral cortical organoids by paired morphological and single-cell RNA-seq analyses.","authors":"Megumi Ikeda, Daisuke Doi, Hayao Ebise, Yuki Ozaki, Misaki Fujii, Tetsuhiro Kikuchi, Kenji Yoshida, Jun Takahashi","doi":"10.1016/j.stemcr.2024.09.005","DOIUrl":"10.1016/j.stemcr.2024.09.005","url":null,"abstract":"<p><p>Organoids, self-organized cell aggregates, contribute significantly to developing disease models and cell-based therapies. Organoid-to-organoid variations, however, are inevitable despite the use of the latest differentiation protocols. Here, we focused on the morphology of organoids formed in a cerebral organoid differentiation culture and assessed their cellular compositions by single-cell RNA sequencing analysis. The data revealed that organoids primarily composed of non-neuronal cells, such as those from the neural crest and choroid plexus, showed unique morphological features. Moreover, we demonstrate that non-destructive morphological analysis can accurately distinguish organoids composed of cerebral cortical tissues from other cerebral tissues, thus enhancing experimental accuracy and reliability to ensure the safety of cell-based therapies.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1635-1646"},"PeriodicalIF":5.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589179/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stem Cell ReportsPub Date : 2024-11-12Epub Date: 2024-10-31DOI: 10.1016/j.stemcr.2024.09.009
Shay Kinreich, Anna Bialer-Tsypin, Ruth Viner-Breuer, Gal Keshet, Roni Suhler, Patrick Siang Lin Lim, Tamar Golan-Lev, Ofra Yanuka, Adi Turjeman, Oren Ram, Eran Meshorer, Dieter Egli, Atilgan Yilmaz, Nissim Benvenisty
{"title":"Genome-wide screening reveals essential roles for HOX genes and imprinted genes during caudal neurogenesis of human embryonic stem cells.","authors":"Shay Kinreich, Anna Bialer-Tsypin, Ruth Viner-Breuer, Gal Keshet, Roni Suhler, Patrick Siang Lin Lim, Tamar Golan-Lev, Ofra Yanuka, Adi Turjeman, Oren Ram, Eran Meshorer, Dieter Egli, Atilgan Yilmaz, Nissim Benvenisty","doi":"10.1016/j.stemcr.2024.09.009","DOIUrl":"10.1016/j.stemcr.2024.09.009","url":null,"abstract":"<p><p>Mapping the essential pathways for neuronal differentiation can uncover new therapeutics and models for neurodevelopmental disorders. We thus utilized a genome-wide loss-of-function library in haploid human embryonic stem cells, differentiated into caudal neuronal cells. We show that essential genes for caudal neurogenesis are enriched for secreted and membrane proteins and that a large group of neurological conditions, including neurodegenerative disorders, manifest early neuronal phenotypes. Furthermore, essential transcription factors are enriched with homeobox (HOX) genes demonstrating synergistic regulation and surprising non-redundant functions between HOXA6 and HOXB6 paralogs. Moreover, we establish the essentialome of imprinted genes during neurogenesis, demonstrating that maternally expressed genes are non-essential in pluripotent cells and their differentiated germ layers, yet several are essential for neuronal development. These include Beckwith-Wiedemann syndrome- and Angelman syndrome-related genes, for which we suggest a novel regulatory pathway. Overall, our work identifies essential pathways for caudal neuronal differentiation and stage-specific phenotypes of neurological disorders.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1598-1619"},"PeriodicalIF":5.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589199/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Accelerated mitochondrial dynamics promote spermatogonial differentiation.","authors":"Zhaoran Zhang, Junru Miao, Hanben Wang, Izza Ali, Duong Nguyen, Wei Chen, Yuan Wang","doi":"10.1016/j.stemcr.2024.09.006","DOIUrl":"10.1016/j.stemcr.2024.09.006","url":null,"abstract":"<p><p>At different stages of spermatogenesis, germ cell mitochondria differ remarkably in morphology, architecture, and functions. However, it remains elusive how mitochondria change their features during spermatogonial differentiation, which in turn impacts spermatogonial stem cell fate decision. In this study, we observed that mitochondrial fusion and fission were both upregulated during spermatogonial differentiation. As a result, the mitochondrial morphology remained unaltered. Enhanced mitochondrial fusion and fission promoted spermatogonial differentiation, while the deficiency in DRP1-mediated fission led to a stage-specific blockage of spermatogenesis at differentiating spermatogonia. Our data further revealed that increased expression of pro-fusion factor MFN1 upregulated mitochondrial metabolism, whereas DRP1 specifically regulated mitochondrial permeability transition pore opening in differentiating spermatogonia. Taken together, our findings unveil how proper spermatogonial differentiation is precisely controlled by concurrently accelerated and properly balanced mitochondrial fusion and fission in a germ cell stage-specific manner, thereby providing critical insights about mitochondrial contribution to stem cell fate decision.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1548-1563"},"PeriodicalIF":5.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589200/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stem Cell ReportsPub Date : 2024-11-12Epub Date: 2024-10-03DOI: 10.1016/j.stemcr.2024.09.001
Nina Doorn, Eva J H F Voogd, Marloes R Levers, Michel J A M van Putten, Monica Frega
{"title":"Breaking the burst: Unveiling mechanisms behind fragmented network bursts in patient-derived neurons.","authors":"Nina Doorn, Eva J H F Voogd, Marloes R Levers, Michel J A M van Putten, Monica Frega","doi":"10.1016/j.stemcr.2024.09.001","DOIUrl":"10.1016/j.stemcr.2024.09.001","url":null,"abstract":"<p><p>Fragmented network bursts (NBs) are observed as a phenotypic driver in many patient-derived neuronal networks on multi-electrode arrays (MEAs), but the pathophysiological mechanisms underlying this phenomenon are unknown. Here, we used our previously developed biophysically detailed in silico model to investigate these mechanisms. Fragmentation of NBs in our model simulations occurred only when the level of short-term synaptic depression (STD) was enhanced, suggesting that STD is a key player. Experimental validation with Dynasore, an STD enhancer, induced fragmented NBs in healthy neuronal networks in vitro. Additionally, we showed that strong asynchronous neurotransmitter release, NMDA currents, or short-term facilitation (STF) can support the emergence of multiple fragments in NBs by producing excitation that persists after high-frequency firing stops. Our results provide important insights into disease mechanisms and potential pharmaceutical targets for neurological disorders modeled using human induced pluripotent stem cell (hiPSC)-derived neurons.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1583-1597"},"PeriodicalIF":5.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589196/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}