Sriivatsan G Rajan, Lynne M Nacke, Joseph N Lombardo, Farid Manuchehrfar, Kaelan Wong, Pinal Kanabar, Elizabeth A Somodji, Jocelyn Garcia, Mark Maienschein-Cline, Jie Liang, Ankur Saxena
{"title":"祖细胞邻域是维持嗅觉神经发生的短暂生态位。","authors":"Sriivatsan G Rajan, Lynne M Nacke, Joseph N Lombardo, Farid Manuchehrfar, Kaelan Wong, Pinal Kanabar, Elizabeth A Somodji, Jocelyn Garcia, Mark Maienschein-Cline, Jie Liang, Ankur Saxena","doi":"10.1016/j.stemcr.2025.102575","DOIUrl":null,"url":null,"abstract":"<p><p>Olfactory neurogenesis occurs throughout the lives of vertebrates, including in humans, and relies on the continuous differentiation and integration of neurons into a complex network. How progenitor cells convert fluctuations in cell-cell signaling into streamlined fate decisions over both space and time is poorly understood. Here, we track multicellular dynamics in the zebrafish olfactory epithelium, undertake targeted perturbations, and find that neurogenesis is driven by mutual antagonism between Notch signaling and insulinoma-associated 1a (Insm1a) that is responsive to inter-organ retinoic acid signaling. Single-cell analysis reveals that olfactory neurons emerge from transient groups of cells termed cellular neighborhoods. Stochastic modeling shows that neighborhood self-assembly is maintained by a tightly regulated bistable toggle switch. Differentiating cells migrate apically in response to brain-derived neurotrophic factor (BDNF) to take up residence as mature sensory neurons. Cumulatively, these findings reveal how stochastic signaling networks spatiotemporally regulate a balance between progenitors and derivatives, driving sustained neurogenesis in an intricate organ system.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"102575"},"PeriodicalIF":5.9000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progenitor neighborhoods function as transient niches to sustain olfactory neurogenesis.\",\"authors\":\"Sriivatsan G Rajan, Lynne M Nacke, Joseph N Lombardo, Farid Manuchehrfar, Kaelan Wong, Pinal Kanabar, Elizabeth A Somodji, Jocelyn Garcia, Mark Maienschein-Cline, Jie Liang, Ankur Saxena\",\"doi\":\"10.1016/j.stemcr.2025.102575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Olfactory neurogenesis occurs throughout the lives of vertebrates, including in humans, and relies on the continuous differentiation and integration of neurons into a complex network. How progenitor cells convert fluctuations in cell-cell signaling into streamlined fate decisions over both space and time is poorly understood. Here, we track multicellular dynamics in the zebrafish olfactory epithelium, undertake targeted perturbations, and find that neurogenesis is driven by mutual antagonism between Notch signaling and insulinoma-associated 1a (Insm1a) that is responsive to inter-organ retinoic acid signaling. Single-cell analysis reveals that olfactory neurons emerge from transient groups of cells termed cellular neighborhoods. Stochastic modeling shows that neighborhood self-assembly is maintained by a tightly regulated bistable toggle switch. Differentiating cells migrate apically in response to brain-derived neurotrophic factor (BDNF) to take up residence as mature sensory neurons. Cumulatively, these findings reveal how stochastic signaling networks spatiotemporally regulate a balance between progenitors and derivatives, driving sustained neurogenesis in an intricate organ system.</p>\",\"PeriodicalId\":21885,\"journal\":{\"name\":\"Stem Cell Reports\",\"volume\":\" \",\"pages\":\"102575\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.stemcr.2025.102575\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stemcr.2025.102575","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Progenitor neighborhoods function as transient niches to sustain olfactory neurogenesis.
Olfactory neurogenesis occurs throughout the lives of vertebrates, including in humans, and relies on the continuous differentiation and integration of neurons into a complex network. How progenitor cells convert fluctuations in cell-cell signaling into streamlined fate decisions over both space and time is poorly understood. Here, we track multicellular dynamics in the zebrafish olfactory epithelium, undertake targeted perturbations, and find that neurogenesis is driven by mutual antagonism between Notch signaling and insulinoma-associated 1a (Insm1a) that is responsive to inter-organ retinoic acid signaling. Single-cell analysis reveals that olfactory neurons emerge from transient groups of cells termed cellular neighborhoods. Stochastic modeling shows that neighborhood self-assembly is maintained by a tightly regulated bistable toggle switch. Differentiating cells migrate apically in response to brain-derived neurotrophic factor (BDNF) to take up residence as mature sensory neurons. Cumulatively, these findings reveal how stochastic signaling networks spatiotemporally regulate a balance between progenitors and derivatives, driving sustained neurogenesis in an intricate organ system.
期刊介绍:
Stem Cell Reports publishes high-quality, peer-reviewed research presenting conceptual or practical advances across the breadth of stem cell research and its applications to medicine. Our particular focus on shorter, single-point articles, timely publication, strong editorial decision-making and scientific input by leaders in the field and a "scoop protection" mechanism are reasons to submit your best papers.