Unraveling the matrisome signatures of quiescent and activated muscle stem cells.

IF 5.1 2区 医学 Q1 CELL & TISSUE ENGINEERING
Emilie Guillon, Hisoilat Bacar, Laurent Gilquin, Takako Sasaki, Philippos Mourikis, Florence Ruggiero
{"title":"Unraveling the matrisome signatures of quiescent and activated muscle stem cells.","authors":"Emilie Guillon, Hisoilat Bacar, Laurent Gilquin, Takako Sasaki, Philippos Mourikis, Florence Ruggiero","doi":"10.1016/j.stemcr.2025.102635","DOIUrl":null,"url":null,"abstract":"<p><p>The extracellular matrix (ECM) forms a dynamic microenvironment, known as the \"niche,\" that influences muscle stem cell (MuSC) behavior. Its composition and topology remain underexplored. Using bioinformatics analysis of publicly available transcriptomic data, we profiled the matrisome of skeletal muscle-resident cells and identified quiescent MuSCs as key ECM producers. Their matrisome includes novel markers such as the basement membrane zone genes Col19a1 and Lama3, ECM assembly regulators Thsd4 and Aebp1, and notably, matrisome genes linked to neurogenesis. Light-sheet immunofluorescence microscopy of selected ECM components in isolated murine myofiber bundles revealed niche-specific ECM components associated with MuSCs. Upon activation, these cells shifted their gene expression, downregulating niche-associated ECM genes while upregulating those involved in basement membrane disruption and cell motility. These findings identify distinct matrisome signatures in quiescent and activated MuSCs, emphasizing the critical role of ECM in locally regulating MuSC states and highlighting its therapeutic potential for muscle regeneration.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"102635"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stemcr.2025.102635","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The extracellular matrix (ECM) forms a dynamic microenvironment, known as the "niche," that influences muscle stem cell (MuSC) behavior. Its composition and topology remain underexplored. Using bioinformatics analysis of publicly available transcriptomic data, we profiled the matrisome of skeletal muscle-resident cells and identified quiescent MuSCs as key ECM producers. Their matrisome includes novel markers such as the basement membrane zone genes Col19a1 and Lama3, ECM assembly regulators Thsd4 and Aebp1, and notably, matrisome genes linked to neurogenesis. Light-sheet immunofluorescence microscopy of selected ECM components in isolated murine myofiber bundles revealed niche-specific ECM components associated with MuSCs. Upon activation, these cells shifted their gene expression, downregulating niche-associated ECM genes while upregulating those involved in basement membrane disruption and cell motility. These findings identify distinct matrisome signatures in quiescent and activated MuSCs, emphasizing the critical role of ECM in locally regulating MuSC states and highlighting its therapeutic potential for muscle regeneration.

揭示静止和激活肌肉干细胞的基质特征。
细胞外基质(ECM)形成一个动态的微环境,被称为“生态位”,影响肌肉干细胞(MuSC)的行为。它的组成和拓扑结构仍未被充分研究。利用生物信息学分析公开可用的转录组数据,我们描绘了骨骼肌驻留细胞的基质,并确定了静止的musc是关键的ECM产生者。他们的基质包括新的标记,如基底膜区基因Col19a1和Lama3, ECM组装调节因子Thsd4和Aebp1,值得注意的是,与神经发生相关的基质基因。在小鼠分离肌纤维束中选择的ECM成分的薄层免疫荧光显微镜显示与musc相关的特定利基ECM成分。激活后,这些细胞改变了它们的基因表达,下调与生态位相关的ECM基因,而上调与基底膜破坏和细胞运动有关的基因。这些发现在静止和激活的MuSC中发现了不同的基质特征,强调了ECM在局部调节MuSC状态中的关键作用,并强调了其在肌肉再生中的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stem Cell Reports
Stem Cell Reports CELL & TISSUE ENGINEERING-CELL BIOLOGY
CiteScore
10.50
自引率
1.70%
发文量
200
审稿时长
28 weeks
期刊介绍: Stem Cell Reports publishes high-quality, peer-reviewed research presenting conceptual or practical advances across the breadth of stem cell research and its applications to medicine. Our particular focus on shorter, single-point articles, timely publication, strong editorial decision-making and scientific input by leaders in the field and a "scoop protection" mechanism are reasons to submit your best papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信