{"title":"Using Google Maps to Generate Organizational Sampling Frames","authors":"Brad R Fulton, David P King","doi":"10.1177/00491241241305095","DOIUrl":"https://doi.org/10.1177/00491241241305095","url":null,"abstract":"Organizational researchers use a variety of methods to obtain sampling frames. The utility of these methods, however, is constrained by access restrictions, limited coverage, prohibitive costs, and cumbersome formats. This article presents a new method for generating organizational sampling frames that is cost-effective, uses publicly available data, and can produce sampling frames for many geographic areas in the U.S. The Python-based program we developed systematically scans the Google Maps platform to identify organizations of interest and retrieve their contact information. We demonstrate the program's viability and utility by generating a sampling frame of religious congregations in the U.S. To assess Google Maps’ coverage and representativeness of such congregations, we examined two nationally representative samples of congregations and censuses of congregations in a small, medium, and large city. We found that Google Maps contains approximately 98% of those congregations––extensive coverage that ensures a high degree of representativeness. This study provides evidence that using Google Maps to generate sampling frames can improve the process for obtaining representative samples for organizational studies by reducing costs, increasing efficiency, and providing greater coverage and representativeness.","PeriodicalId":21849,"journal":{"name":"Sociological Methods & Research","volume":"38 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kristen Olson, John Stevenson, Nadia Assad, Lindsey Witt-Swanson, Cameron P.E. Jones, Amanda Ganshert, Jennifer Dykema
{"title":"Examining Variation in Survey Costs Across Surveys","authors":"Kristen Olson, John Stevenson, Nadia Assad, Lindsey Witt-Swanson, Cameron P.E. Jones, Amanda Ganshert, Jennifer Dykema","doi":"10.1177/00491241241298914","DOIUrl":"https://doi.org/10.1177/00491241241298914","url":null,"abstract":"Self-administered surveys may be administered with a single mode or mixed data collection modes. How mixing modes of data collection affects survey costs is not well understood. We examine whether cost structures differ for mail-only versus web+mail mixed-mode surveys, what design features are associated with costs, and whether survey costs are associated with response rates. Using administrative survey cost data from two academic survey centers, we find that survey costs per sampled unit and per complete vary substantially across individual surveys. The average cost per sampled unit is surprisingly similar across mail-only and web+mail surveys. How the budget is allocated across printing, postage, incentive, and staff time varies across these designs: printing and postage costs are higher in mail-only surveys, and more of the budget is allocated to incentive costs and project management costs in web+mail surveys. Furthermore, higher cost surveys are associated with higher response rates, particularly for incentive costs.","PeriodicalId":21849,"journal":{"name":"Sociological Methods & Research","volume":"1 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joanne W. Golann, Lori Bougher, Richard Hall, Thomas J. Espenshade
{"title":"Sharing Big Video Data: Ethics, Methods, and Technology","authors":"Joanne W. Golann, Lori Bougher, Richard Hall, Thomas J. Espenshade","doi":"10.1177/00491241241277524","DOIUrl":"https://doi.org/10.1177/00491241241277524","url":null,"abstract":"Data sharing and transparency are becoming more common across the social sciences. In this article, we provide an overview of ethical, methodological, and technological considerations and challenges when developing large video-based datasets intended to be shared across researchers. We cover data security, storage, and access as well as data documentation, tagging, and transcription. Our discussions are framed by our own efforts to create a secure and user-friendly database for the New Jersey Families Study, a two-week, in-home video study of 21 families with a 2- to 4-year-old child. In collecting over 11,470 hours of video data, the New Jersey Families Study is one of the very few large-scale video projects in the field of sociology. This project has provided us with a unique opportunity to explore video data management and data sharing techniques, particularly in light of a host of cutting-edge developments in data science.","PeriodicalId":21849,"journal":{"name":"Sociological Methods & Research","volume":"31 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142306403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamics of Health Expectancy: An Introduction to the Multiple Multistate Method (MMM)","authors":"Tianyu Shen, Collin F. Payne, Maria Jahromi","doi":"10.1177/00491241241268775","DOIUrl":"https://doi.org/10.1177/00491241241268775","url":null,"abstract":"Many studies have compared individual measures of health expectancy across older populations by time-invariant characteristics. However, very few have included time-varying variables when calculating health expectancy. Even among older adults, socioeconomic and demographic characteristics are likely to change over the life course, and these changes may have substantial implications for health outcomes. This paper proposes a multiple multistate method (MMM) that situates the multistate model within the broader family of vector autoregressive models. Our approach allows the incorporation of the coevolution of multiple life course factors and provides a flexible yet simple way to model two or more time-varying variables with the multistate model. We demonstrate the MMM in two empirical applications, showing the flexibility of the approach to explore health expectancies with complex state spaces.","PeriodicalId":21849,"journal":{"name":"Sociological Methods & Research","volume":"8 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miriam Hurtado Bodell, Måns Magnusson, Marc Keuschnigg
{"title":"Seeded Topic Models in Digital Archives: Analyzing Interpretations of Immigration in Swedish Newspapers, 1945–2019","authors":"Miriam Hurtado Bodell, Måns Magnusson, Marc Keuschnigg","doi":"10.1177/00491241241268453","DOIUrl":"https://doi.org/10.1177/00491241241268453","url":null,"abstract":"Sociologists are discussing the need for more formal ways to extract meaning from digital text archives. We focus attention on the seeded topic model, a semi-supervised extension to the standard topic model that allows sociological knowledge to be infused into the computational learning of meaning structures. Seed words help crystallize topics around known concepts, while utilizing topic models’ functionality to identify associations in text based on word co-occurrences. The method estimates a concept’s shared interpretation (or framing) via its associations with other frequently co-occurring topics. In a case study, we extract longitudinal measures of media frames regarding immigration from a vast corpus of millions of Swedish newspaper articles from the period 1945–2019. We infer turning points that partition the immigration discourse into meaningful eras and locate Sweden’s era of multicultural ideals that coined its tolerant reputation.","PeriodicalId":21849,"journal":{"name":"Sociological Methods & Research","volume":"17 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142042539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bernard J. Koch, Tim Sainburg, Pablo Geraldo Bastías, Song Jiang, Yizhou Sun, Jacob G. Foster
{"title":"A Primer on Deep Learning for Causal Inference","authors":"Bernard J. Koch, Tim Sainburg, Pablo Geraldo Bastías, Song Jiang, Yizhou Sun, Jacob G. Foster","doi":"10.1177/00491241241234866","DOIUrl":"https://doi.org/10.1177/00491241241234866","url":null,"abstract":"This primer systematizes the emerging literature on causal inference using deep neural networks under the potential outcomes framework. It provides an intuitive introduction to building and optimizing custom deep learning models and shows how to adapt them to estimate/predict heterogeneous treatment effects. It also discusses ongoing work to extend causal inference to settings where confounding is nonlinear, time-varying, or encoded in text, networks, and images. To maximize accessibility, we also introduce prerequisite concepts from causal inference and deep learning. The primer differs from other treatments of deep learning and causal inference in its sharp focus on observational causal estimation, its extended exposition of key algorithms, and its detailed tutorials for implementing, training, and selecting among deep estimators in TensorFlow 2 and PyTorch.","PeriodicalId":21849,"journal":{"name":"Sociological Methods & Research","volume":"95 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141994354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Untapped Potential: Designed Digital Trace Data in Online Survey Experiments","authors":"Erin Macke, Claire Daviss, Emma Williams-Baron","doi":"10.1177/00491241241268770","DOIUrl":"https://doi.org/10.1177/00491241241268770","url":null,"abstract":"Researchers have developed many uses for digital trace data, yet most online survey experiments continue to rely on attitudinal rather than behavioral measures. We argue that researchers can collect digital trace data during online survey experiments with relative ease, at modest costs, and to substantial benefit. Because digital trace data unobtrusively measure survey participants’ behaviors, they can be used to analyze digital outcomes of theoretical and empirical interest, while reducing the risk of social desirability bias. We demonstrate the feasibility and utility of collecting digital trace data during online survey experiments through two original studies. In both, participants evaluated interactive digital resumes designed to track participants’ clicks, mouse movements, and time spent on the resumes. This novel approach allowed us to better understand participants’ search for information and cognitive processing in hiring decisions. There is immense, untapped potential value in collecting digital trace data during online survey experiments and using it to address important sociological research questions.","PeriodicalId":21849,"journal":{"name":"Sociological Methods & Research","volume":"3 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141910238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Handle with Care: A Sociologist’s Guide to Causal Inference with Instrumental Variables","authors":"Chris Felton, Brandon M. Stewart","doi":"10.1177/00491241241235900","DOIUrl":"https://doi.org/10.1177/00491241241235900","url":null,"abstract":"Instrumental variables (IV) analysis is a powerful, but fragile, tool for drawing causal inferences from observational data. Sociologists increasingly turn to this strategy in settings where unmeasured confounding between the treatment and outcome is likely. This paper reviews the assumptions required for IV and the consequences of violating them, focusing on sociological applications. We highlight three methodological problems IV faces: (i) identification bias, an asymptotic bias from assumption violations; (ii) estimation bias, a finite-sample bias that persists even when assumptions hold; and (iii) type-M error, the exaggeration of effect size given statistical significance. In each case, we emphasize how weak instruments exacerbate these problems and make results sensitive to minor violations of assumptions. We survey IV papers from top sociology journals, finding that assumptions often go unstated and robust uncertainty measures are rarely used. We provide a practical checklist to show how IV, despite its fragility, can still be useful when handled with care.","PeriodicalId":21849,"journal":{"name":"Sociological Methods & Research","volume":"30 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141910241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Age, Period, and Cohort Analysis With Bounding and Interactions","authors":"Jiwon Lee","doi":"10.1177/00491241241266279","DOIUrl":"https://doi.org/10.1177/00491241241266279","url":null,"abstract":"This article uses the example of voter turnout in US presidential elections to compare two new methods for age, period, and cohort (APC) analysis: the APC interaction model and the APC bounding analysis. While discussing the formal, conceptual, and interpretive differences between the two methods, the analysis demonstrates how both methods can be used to generate distinct but complementary findings. Because the two methods take alternative positions on the appropriate cohort-effect estimands, the comparison underscores the importance of well-grounded conceptual foundations in APC analysis.","PeriodicalId":21849,"journal":{"name":"Sociological Methods & Research","volume":"41 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141880349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Causal Decomposition Analysis With Time-Varying Mediators: Designing Individualized Interventions to Reduce Social Disparities","authors":"Soojin Park, Namhwa Lee, Rafael Quintana","doi":"10.1177/00491241241264562","DOIUrl":"https://doi.org/10.1177/00491241241264562","url":null,"abstract":"Causal decomposition analysis aims to identify risk factors (referred to as “mediators”) that contribute to social disparities in an outcome. Despite promising developments in causal decomposition analysis, current methods are limited to addressing a time-fixed mediator and outcome only, which has restricted our understanding of the causal mechanisms underlying social disparities. In particular, existing approaches largely overlook individual characteristics when designing (hypothetical) interventions to reduce disparities. To address this issue, we extend current longitudinal mediation approaches to the context of disparities research. Specifically, we develop a novel decomposition analysis method that addresses individual characteristics by (a) using optimal dynamic treatment regimes (DTRs) and (b) conditioning on a selective set of individual characteristics. Incorporating optimal DTRs into the design of interventions can be used to strike a balance between equity (reducing disparities) and excellence (improving individuals’ outcomes). We illustrate the proposed method using the High School Longitudinal Study data.","PeriodicalId":21849,"journal":{"name":"Sociological Methods & Research","volume":"24 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}