{"title":"具有时变中介因子的因果分解分析:设计个性化干预措施以减少社会差距","authors":"Soojin Park, Namhwa Lee, Rafael Quintana","doi":"10.1177/00491241241264562","DOIUrl":null,"url":null,"abstract":"Causal decomposition analysis aims to identify risk factors (referred to as “mediators”) that contribute to social disparities in an outcome. Despite promising developments in causal decomposition analysis, current methods are limited to addressing a time-fixed mediator and outcome only, which has restricted our understanding of the causal mechanisms underlying social disparities. In particular, existing approaches largely overlook individual characteristics when designing (hypothetical) interventions to reduce disparities. To address this issue, we extend current longitudinal mediation approaches to the context of disparities research. Specifically, we develop a novel decomposition analysis method that addresses individual characteristics by (a) using optimal dynamic treatment regimes (DTRs) and (b) conditioning on a selective set of individual characteristics. Incorporating optimal DTRs into the design of interventions can be used to strike a balance between equity (reducing disparities) and excellence (improving individuals’ outcomes). We illustrate the proposed method using the High School Longitudinal Study data.","PeriodicalId":21849,"journal":{"name":"Sociological Methods & Research","volume":"24 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Causal Decomposition Analysis With Time-Varying Mediators: Designing Individualized Interventions to Reduce Social Disparities\",\"authors\":\"Soojin Park, Namhwa Lee, Rafael Quintana\",\"doi\":\"10.1177/00491241241264562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Causal decomposition analysis aims to identify risk factors (referred to as “mediators”) that contribute to social disparities in an outcome. Despite promising developments in causal decomposition analysis, current methods are limited to addressing a time-fixed mediator and outcome only, which has restricted our understanding of the causal mechanisms underlying social disparities. In particular, existing approaches largely overlook individual characteristics when designing (hypothetical) interventions to reduce disparities. To address this issue, we extend current longitudinal mediation approaches to the context of disparities research. Specifically, we develop a novel decomposition analysis method that addresses individual characteristics by (a) using optimal dynamic treatment regimes (DTRs) and (b) conditioning on a selective set of individual characteristics. Incorporating optimal DTRs into the design of interventions can be used to strike a balance between equity (reducing disparities) and excellence (improving individuals’ outcomes). We illustrate the proposed method using the High School Longitudinal Study data.\",\"PeriodicalId\":21849,\"journal\":{\"name\":\"Sociological Methods & Research\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sociological Methods & Research\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/00491241241264562\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociological Methods & Research","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/00491241241264562","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
Causal Decomposition Analysis With Time-Varying Mediators: Designing Individualized Interventions to Reduce Social Disparities
Causal decomposition analysis aims to identify risk factors (referred to as “mediators”) that contribute to social disparities in an outcome. Despite promising developments in causal decomposition analysis, current methods are limited to addressing a time-fixed mediator and outcome only, which has restricted our understanding of the causal mechanisms underlying social disparities. In particular, existing approaches largely overlook individual characteristics when designing (hypothetical) interventions to reduce disparities. To address this issue, we extend current longitudinal mediation approaches to the context of disparities research. Specifically, we develop a novel decomposition analysis method that addresses individual characteristics by (a) using optimal dynamic treatment regimes (DTRs) and (b) conditioning on a selective set of individual characteristics. Incorporating optimal DTRs into the design of interventions can be used to strike a balance between equity (reducing disparities) and excellence (improving individuals’ outcomes). We illustrate the proposed method using the High School Longitudinal Study data.
期刊介绍:
Sociological Methods & Research is a quarterly journal devoted to sociology as a cumulative empirical science. The objectives of SMR are multiple, but emphasis is placed on articles that advance the understanding of the field through systematic presentations that clarify methodological problems and assist in ordering the known facts in an area. Review articles will be published, particularly those that emphasize a critical analysis of the status of the arts, but original presentations that are broadly based and provide new research will also be published. Intrinsically, SMR is viewed as substantive journal but one that is highly focused on the assessment of the scientific status of sociology. The scope is broad and flexible, and authors are invited to correspond with the editors about the appropriateness of their articles.