Skeletal Muscle最新文献

筛选
英文 中文
Angiogenesis precedes myogenesis during regeneration following biopsy injury of skeletal muscle. 骨骼肌活检损伤后再生过程中血管生成先于肌肉生成。
IF 4.9 2区 医学
Skeletal Muscle Pub Date : 2023-02-14 DOI: 10.1186/s13395-023-00313-3
Nicole L Jacobsen, Aaron B Morton, Steven S Segal
{"title":"Angiogenesis precedes myogenesis during regeneration following biopsy injury of skeletal muscle.","authors":"Nicole L Jacobsen,&nbsp;Aaron B Morton,&nbsp;Steven S Segal","doi":"10.1186/s13395-023-00313-3","DOIUrl":"https://doi.org/10.1186/s13395-023-00313-3","url":null,"abstract":"<p><strong>Background: </strong>Acute injury to skeletal muscle damages myofibers and fragment capillaries, impairing contractile function and local perfusion. Myofibers and microvessels regenerate from satellite cells and from surviving microvessel fragments, respectively, to restore intact muscle. Established models of injury have used myotoxins and physical trauma to demonstrate the concurrence of myogenesis and angiogenesis during regeneration. In these models, efferocytosis removes cellular debris while basal laminae persist to provide guidance during myofiber and microvessel regeneration. It is unknown whether the spatiotemporal coupling between myofiber and microvascular regeneration persists when muscle tissue is completely removed and local guidance cues are lost.</p><p><strong>Methods: </strong>To test whether complete removal of skeletal muscle tissue affects the spatiotemporal relationship between myogenesis and angiogenesis during regeneration, subthreshold volumetric muscle loss was created with a biopsy punch (diameter, 2 mm) through the center of the gluteus maximus (GM) in adult mice. Regeneration into the void was evaluated through 21 days post-injury (dpi). Microvascular perfusion was evaluated in vivo by injecting fluorescent dextran into the circulation during intravital imaging. Confocal imaging and histological analyses of whole-mount GM preparations and tissue cross-sections assessed the growth of microvessels and myofibers into the wound.</p><p><strong>Results: </strong>A provisional matrix filled with PDGFRα<sup>+</sup> and CD45<sup>+</sup> cells spanned the wound within 1 dpi. Regenerating microvessels advanced from the edges of the wound into the matrix by 7 dpi. Nascent microvascular networks formed by 10 dpi with blood-perfused networks spanning the wound by 14 dpi. In striking contrast, the wound remained devoid of myofibers at 7 and 10 dpi. Myogenesis into the wound was apparent by 14 dpi and traversed the wound by 21 dpi. Regenerated myofibers and microvessels were disorganized compared to the uninjured muscle.</p><p><strong>Conclusions: </strong>Following punch biopsy of adult skeletal muscle, regenerating microvessels span the wound and become perfused with blood prior to myofiber regeneration. The loss of residual guidance cues with complete tissue removal disrupts the spatiotemporal correspondence between microvascular and myofiber regeneration. We conclude that angiogenesis precedes myogenesis during regeneration following subthreshold volumetric muscle loss.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"13 1","pages":"3"},"PeriodicalIF":4.9,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9926536/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9551224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Sarcopenia: investigation of metabolic changes and its associated mechanisms. 肌肉减少症:代谢变化及其相关机制的研究。
IF 4.9 2区 医学
Skeletal Muscle Pub Date : 2023-01-19 DOI: 10.1186/s13395-022-00312-w
Jair Marques, Engy Shokry, Olaf Uhl, Lisa Baber, Fabian Hofmeister, Stefanie Jarmusch, Martin Bidlingmaier, Uta Ferrari, Berthold Koletzko, Michael Drey
{"title":"Sarcopenia: investigation of metabolic changes and its associated mechanisms.","authors":"Jair Marques,&nbsp;Engy Shokry,&nbsp;Olaf Uhl,&nbsp;Lisa Baber,&nbsp;Fabian Hofmeister,&nbsp;Stefanie Jarmusch,&nbsp;Martin Bidlingmaier,&nbsp;Uta Ferrari,&nbsp;Berthold Koletzko,&nbsp;Michael Drey","doi":"10.1186/s13395-022-00312-w","DOIUrl":"https://doi.org/10.1186/s13395-022-00312-w","url":null,"abstract":"<p><strong>Background: </strong>Sarcopenia is one of the most predominant musculoskeletal diseases of the elderly, defined as age-related progressive and generalized loss of muscle mass with a simultaneous reduction in muscle strength and/or function. Using metabolomics, we aimed to examine the association between sarcopenia and the plasma metabolic profile of sarcopenic patients, measured using a targeted HPLC-MS/MS platform.</p><p><strong>Methods: </strong>Plasma samples from 22 (17 men) hip fracture patients undergoing surgery (8 sarcopenic, age 81.4+6.3, and 14 non-sarcopenic, age 78.4±8.1) were analyzed. T test, fold change, orthogonal partial least squares discriminant analysis, and sparse partial least squares discriminant analysis were used for mining significant features. Metabolite set enrichment analysis and mediation analysis by PLSSEM were thereafter performed.</p><p><strong>Results: </strong>Using a univariate analysis for sarcopenia z score, the amino acid citrulline was the only metabolite with a significant group difference after FDR correction. Positive trends were observed between the sarcopenia z score and very long-chain fatty acids as well as dicarboxylic acid carnitines. Multivariate analysis showed citrulline, non-esterified fatty acid 26:2, and decanedioyl carnitine as the top three metabolites according to the variable importance in projection using oPLS-DA and loadings weight by sPLS-DA. Metabolite set enrichment analysis showed carnitine palmitoyltransferase deficiency (II) as the highest condition related to the metabolome.</p><p><strong>Conclusions: </strong>We observed a difference in the plasma metabolic profile in association with different measures of sarcopenia, which identifies very long-chain fatty acids, Carn.DC and citrulline as key variables associated with the disease severity. These findings point to a potential link between sarcopenia and mitochondrial dysfunction and portraits a number of possible biochemical pathways which might be involved in the disease pathogenesis.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"13 1","pages":"2"},"PeriodicalIF":4.9,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9850598/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10698115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Multi-omics analysis of sarcospan overexpression in mdx skeletal muscle reveals compensatory remodeling of cytoskeleton-matrix interactions that promote mechanotransduction pathways. 对mdx骨骼肌中sarcospan过表达的多组学分析揭示了促进机械传导途径的细胞骨架-基质相互作用的代偿性重塑。
IF 5.3 2区 医学
Skeletal Muscle Pub Date : 2023-01-06 DOI: 10.1186/s13395-022-00311-x
Jackie L McCourt, Kristen M Stearns-Reider, Hafsa Mamsa, Pranav Kannan, Mohammad Hossein Afsharinia, Cynthia Shu, Elizabeth M Gibbs, Kara M Shin, Yerbol Z Kurmangaliyev, Lauren R Schmitt, Kirk C Hansen, Rachelle H Crosbie
{"title":"Multi-omics analysis of sarcospan overexpression in mdx skeletal muscle reveals compensatory remodeling of cytoskeleton-matrix interactions that promote mechanotransduction pathways.","authors":"Jackie L McCourt, Kristen M Stearns-Reider, Hafsa Mamsa, Pranav Kannan, Mohammad Hossein Afsharinia, Cynthia Shu, Elizabeth M Gibbs, Kara M Shin, Yerbol Z Kurmangaliyev, Lauren R Schmitt, Kirk C Hansen, Rachelle H Crosbie","doi":"10.1186/s13395-022-00311-x","DOIUrl":"10.1186/s13395-022-00311-x","url":null,"abstract":"<p><strong>Background: </strong>The dystrophin-glycoprotein complex (DGC) is a critical adhesion complex of the muscle cell membrane, providing a mechanical link between the extracellular matrix (ECM) and the cortical cytoskeleton that stabilizes the sarcolemma during repeated muscle contractions. One integral component of the DGC is the transmembrane protein, sarcospan (SSPN). Overexpression of SSPN in the skeletal muscle of mdx mice (murine model of DMD) restores muscle fiber attachment to the ECM in part through an associated increase in utrophin and integrin adhesion complexes at the cell membrane, protecting the muscle from contraction-induced injury. In this study, we utilized transcriptomic and ECM protein-optimized proteomics data sets from wild-type, mdx, and mdx transgenic (mdx<sup>TG</sup>) skeletal muscle tissues to identify pathways and proteins driving the compensatory action of SSPN overexpression.</p><p><strong>Methods: </strong>The tibialis anterior and quadriceps muscles were isolated from wild-type, mdx, and mdx<sup>TG</sup> mice and subjected to bulk RNA-Seq and global proteomics analysis using methods to enhance capture of ECM proteins. Data sets were further analyzed through the ingenuity pathway analysis (QIAGEN) and integrative gene set enrichment to identify candidate networks, signaling pathways, and upstream regulators.</p><p><strong>Results: </strong>Through our multi-omics approach, we identified 3 classes of differentially expressed genes and proteins in mdx<sup>TG</sup> muscle, including those that were (1) unrestored (significantly different from wild type, but not from mdx), (2) restored (significantly different from mdx, but not from wild type), and (3) compensatory (significantly different from both wild type and mdx). We identified signaling pathways that may contribute to the rescue phenotype, most notably cytoskeleton and ECM organization pathways. ECM-optimized proteomics revealed an increased abundance of collagens II, V, and XI, along with β-spectrin in mdx<sup>TG</sup> samples. Using ingenuity pathway analysis, we identified upstream regulators that are computationally predicted to drive compensatory changes, revealing a possible mechanism of SSPN rescue through a rewiring of cell-ECM bidirectional communication. We found that SSPN overexpression results in upregulation of key signaling molecules associated with regulation of cytoskeleton organization and mechanotransduction, including Yap1, Sox9, Rho, RAC, and Wnt.</p><p><strong>Conclusions: </strong>Our findings indicate that SSPN overexpression rescues dystrophin deficiency partially through mechanotransduction signaling cascades mediated through components of the ECM and the cortical cytoskeleton.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"13 1","pages":"1"},"PeriodicalIF":5.3,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9817407/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10134465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The prevalence of low muscle mass associated with obesity in the USA. 在美国,低肌肉量的流行与肥胖有关。
IF 4.9 2区 医学
Skeletal Muscle Pub Date : 2022-12-21 DOI: 10.1186/s13395-022-00309-5
Dana J Murdock, Ning Wu, Joseph S Grimsby, Roberto A Calle, Stephen Donahue, David J Glass, Mark W Sleeman, Robert J Sanchez
{"title":"The prevalence of low muscle mass associated with obesity in the USA.","authors":"Dana J Murdock,&nbsp;Ning Wu,&nbsp;Joseph S Grimsby,&nbsp;Roberto A Calle,&nbsp;Stephen Donahue,&nbsp;David J Glass,&nbsp;Mark W Sleeman,&nbsp;Robert J Sanchez","doi":"10.1186/s13395-022-00309-5","DOIUrl":"https://doi.org/10.1186/s13395-022-00309-5","url":null,"abstract":"<p><strong>Background: </strong>Sarcopenia is defined as age-related low muscle mass and function, and can also describe the loss of muscle mass in certain medical conditions, such as sarcopenic obesity. Sarcopenic obesity describes loss of muscle and function in obese individuals; however, as sarcopenia is an age-related condition and obesity can occur in any age group, a more accurate term is obesity with low lean muscle mass (OLLMM). Given limited data on OLLMM (particularly in those aged < 65 years), the purpose of this study was to estimate the prevalence of OLLMM in adults aged ≥ 20 years in the USA.</p><p><strong>Methods: </strong>Data from the National Health and Nutrition Examination Survey (NHANES) 2017-2018 and 1999-2006 were used. OLLMM was defined as an appendicular lean mass, adjusted for body mass index (BMI), cut-off point < 0.789 for males and < 0.512 for females, measured by dual-energy X-ray absorptiometry (DXA). DXA was only measured in individuals 20-59 years old in NHANES 2017-2018; we therefore utilized logistic regression models to predict OLLMM from NHANES 1999-2006 for those aged ≥ 60 years. The prevalence of OLLMM was estimated overall, and by sex, age, race/ethnicity, and clinical subgroup (high BMI, prediabetes, type 2 diabetes mellitus [T2DM], non-alcoholic fatty liver disease [NAFLD] with fibrosis, or post-bariatric surgery). Prevalence estimates were extrapolated to the USA population using NHANES sampling weights.</p><p><strong>Results: </strong>We estimated that, during 2017-2018, 28.7 million or 15.9% of the USA population had OLLMM. The prevalence of OLLMM was greater in older individuals (8.1%, aged 20-59 years vs 28.3%, aged ≥ 60 years), highest (66.6%) in Mexican-American females aged ≥ 60 years, and lowest (2.6%) in non-Hispanic Black males aged 20-59 years. There was a higher prevalence of OLLMM in adults with prediabetes (19.7%), T2DM (34.5%), NAFLD with fibrosis (25.4%), or post-bariatric surgery (21.8%), compared with those without each condition.</p><p><strong>Conclusions: </strong>Overall, the burden of OLLMM in the USA is substantial, affecting almost 30 million adults. The prevalence of OLLMM increased with age, and among those with prediabetes, T2DM, NAFLD with fibrosis, or post-bariatric surgery. A unified definition of OLLMM will aid diagnosis and treatment strategies.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"12 1","pages":"26"},"PeriodicalIF":4.9,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769063/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10579759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Limb-girdle muscular dystrophy type 2B causes HDL-C abnormalities in patients and statin-resistant muscle wasting in dysferlin-deficient mice. 2B型肢带性肌营养不良症导致患者HDL-C异常,并导致异ferlin缺乏小鼠出现他汀类药物抵抗性肌肉萎缩。
IF 4.9 2区 医学
Skeletal Muscle Pub Date : 2022-11-29 DOI: 10.1186/s13395-022-00308-6
Zoe White, Zeren Sun, Elodie Sauge, Dan Cox, Graham Donen, Dmitri Pechkovsky, Volker Straub, Gordon A Francis, Pascal Bernatchez
{"title":"Limb-girdle muscular dystrophy type 2B causes HDL-C abnormalities in patients and statin-resistant muscle wasting in dysferlin-deficient mice.","authors":"Zoe White,&nbsp;Zeren Sun,&nbsp;Elodie Sauge,&nbsp;Dan Cox,&nbsp;Graham Donen,&nbsp;Dmitri Pechkovsky,&nbsp;Volker Straub,&nbsp;Gordon A Francis,&nbsp;Pascal Bernatchez","doi":"10.1186/s13395-022-00308-6","DOIUrl":"https://doi.org/10.1186/s13395-022-00308-6","url":null,"abstract":"<p><p>Limb-girdle muscular dystrophy (MD) type 2B (LGMD2B) and Duchenne MD (DMD) are caused by mutations to the Dysferlin and Dystrophin genes, respectively. We have recently demonstrated in typically mild dysferlin- and dystrophin-deficient mouse models that increased plasma cholesterol levels severely exacerbate muscle wasting, and that DMD patients display primary dyslipidemia characterized by elevated plasma cholesterol and triglycerides. Herein, we investigate lipoprotein abnormalities in LGMD2B and if statin therapy protects dysferlin-deficient mice (Dysf) from muscle damage. Herein, lipoproteins and liver enzymes from LGMD2B patients and dysferlin-null (Dysf) mice were analyzed. Simvastatin, which exhibits anti-muscle wasting effects in mouse models of DMD and corrects aberrant expression of key markers of lipid metabolism and endogenous cholesterol synthesis, was tested in Dysf mice. Muscle damage and fibrosis were assessed by immunohistochemistry and cholesterol signalling pathways via Western blot. LGMD2B patients show reduced serum high-density lipoprotein cholesterol (HDL-C) levels compared to healthy controls and exhibit a greater prevalence of abnormal total cholesterol (CHOL)/HDL-C ratios despite an absence of liver dysfunction. While Dysf mice presented with reduced CHOL and associated HDL-C and LDL-C-associated fractions, simvastatin treatment did not prevent muscle wasting in quadriceps and triceps muscle groups or correct aberrant low-density lipoprotein receptor (LDLR) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) protein expression. LGMD2B patients present with reduced serum concentrations of HDL-C, a major metabolic comorbidity, and as a result, statin therapy is unlikely to prevent muscle wasting in this population. We propose that like DMD, LGMD2B should be considered as a new type of genetic dyslipidemia.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"12 1","pages":"25"},"PeriodicalIF":4.9,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9706908/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10526261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Macroglossia and less advanced dystrophic change in the tongue muscle of the Duchenne muscular dystrophy rat. 杜氏肌营养不良大鼠舌肌大舌失音及不太严重的营养不良改变。
IF 4.9 2区 医学
Skeletal Muscle Pub Date : 2022-10-19 DOI: 10.1186/s13395-022-00307-7
Keitaro Yamanouchi, Yukie Tanaka, Masanari Ikeda, Shizuka Kato, Ryosuke Okino, Hiroki Nishi, Fumihiko Hakuno, Shin-Ichiro Takahashi, James Chambers, Takashi Matsuwaki, Kazuyuki Uchida
{"title":"Macroglossia and less advanced dystrophic change in the tongue muscle of the Duchenne muscular dystrophy rat.","authors":"Keitaro Yamanouchi,&nbsp;Yukie Tanaka,&nbsp;Masanari Ikeda,&nbsp;Shizuka Kato,&nbsp;Ryosuke Okino,&nbsp;Hiroki Nishi,&nbsp;Fumihiko Hakuno,&nbsp;Shin-Ichiro Takahashi,&nbsp;James Chambers,&nbsp;Takashi Matsuwaki,&nbsp;Kazuyuki Uchida","doi":"10.1186/s13395-022-00307-7","DOIUrl":"https://doi.org/10.1186/s13395-022-00307-7","url":null,"abstract":"<p><strong>Background: </strong>Duchenne muscular dystrophy (DMD) is an X-linked muscle disease caused by a complete lack of dystrophin, which stabilizes the plasma membrane of myofibers. The orofacial function is affected in an advanced stage of DMD and this often leads to an eating disorder such as dysphagia. Dysphagia is caused by multiple etiologies including decreased mastication and swallowing. Therefore, preventing the functional declines of mastication and swallowing in DMD is important to improve the patient's quality of life. In the present study, using a rat model of DMD we generated previously, we performed analyses on the masseter and tongue muscles, both are required for proper eating function.</p><p><strong>Methods: </strong>Age-related changes of the masseter and tongue muscle of DMD rats were analyzed morphometrically, histologically, and immunohistochemically. Also, transcription of cellular senescent markers, and utrophin (Utrn), a functional analog of dystrophin, was examined.</p><p><strong>Results: </strong>The masseter muscle of DMD rats showed progressive dystrophic changes as observed in their hindlimb muscle, accompanied by increased transcription of p16 and p19. On the other hand, the tongue of DMD rats showed macroglossia due to hypertrophy of myofibers with less dystrophic changes. Proliferative activity was preserved in the satellite cells from the tongue muscle but was perturbed severely in those from the masseter muscle. While Utrn transcription was increased in the masseter muscle of DMD rats compared to WT rats, probably due to a compensatory mechanism, its level in the tongue muscle was comparable between WT and DMD rats and was similar to that in the masseter muscle of DMD rats.</p><p><strong>Conclusions: </strong>Muscular dystrophy is less advanced in the tongue muscle compared to the masseter muscle in the DMD rat.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":" ","pages":"24"},"PeriodicalIF":4.9,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9580129/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40339240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Megaconial congenital muscular dystrophy due to novel CHKB variants: a case report and literature review. 由CHKB变异引起的巨头先天性肌营养不良:1例报告及文献复习。
IF 4.9 2区 医学
Skeletal Muscle Pub Date : 2022-09-29 DOI: 10.1186/s13395-022-00306-8
Francesca Magri, Sara Antognozzi, Michela Ripolone, Simona Zanotti, Laura Napoli, Patrizia Ciscato, Daniele Velardo, Giulietta Scuvera, Valeria Nicotra, Antonella Giacobbe, Donatella Milani, Francesco Fortunato, Manuela Garbellini, Monica Sciacco, Stefania Corti, Giacomo Pietro Comi, Dario Ronchi
{"title":"Megaconial congenital muscular dystrophy due to novel CHKB variants: a case report and literature review.","authors":"Francesca Magri,&nbsp;Sara Antognozzi,&nbsp;Michela Ripolone,&nbsp;Simona Zanotti,&nbsp;Laura Napoli,&nbsp;Patrizia Ciscato,&nbsp;Daniele Velardo,&nbsp;Giulietta Scuvera,&nbsp;Valeria Nicotra,&nbsp;Antonella Giacobbe,&nbsp;Donatella Milani,&nbsp;Francesco Fortunato,&nbsp;Manuela Garbellini,&nbsp;Monica Sciacco,&nbsp;Stefania Corti,&nbsp;Giacomo Pietro Comi,&nbsp;Dario Ronchi","doi":"10.1186/s13395-022-00306-8","DOIUrl":"https://doi.org/10.1186/s13395-022-00306-8","url":null,"abstract":"<p><strong>Background: </strong>Choline kinase beta (CHKB) catalyzes the first step in the de novo biosynthesis of phosphatidyl choline and phosphatidylethanolamine via the Kennedy pathway. Derangement of this pathway might also influence the homeostasis of mitochondrial membranes. Autosomal recessive CHKB mutations cause a rare form of congenital muscular dystrophy known as megaconial congenital muscular dystrophy (MCMD).</p><p><strong>Case presentation: </strong>We describe a novel proband presenting MCMD due to unpublished CHKB mutations. The patient is a 6-year-old boy who came to our attention for cognitive impairment and slowly progressive muscular weakness. He was the first son of non-consanguineous healthy parents from Sri Lanka. Neurological examination showed proximal weakness at four limbs, weak osteotendinous reflexes, Gowers' maneuver, and waddling gate. Creatine kinase levels were mildly increased. EMG and brain MRI were normal. Left quadriceps skeletal muscle biopsy showed a myopathic pattern with nuclear centralizations and connective tissue increase. Histological and histochemical staining suggested subsarcolemmal localization and dimensional increase of mitochondria. Ultrastructural analysis confirmed the presence of enlarged (\"megaconial\") mitochondria. Direct sequencing of CHKB identified two novel defects: the c.1060G > C (p.Gly354Arg) substitution and the c.448-56_29del intronic deletion, segregating from father and mother, respectively. Subcloning of RT-PCR amplicons from patient's muscle RNA showed that c.448-56_29del results in the partial retention (14 nucleotides) of intron 3, altering physiological splicing and transcript stability. Biochemical studies showed reduced levels of the mitochondrial fission factor DRP1 and the severe impairment of mitochondrial respiratory chain activity in patient's muscle compared to controls.</p><p><strong>Conclusions: </strong>This report expands the molecular findings associated with MCMD and confirms the importance of considering CHKB variants in the differential diagnosis of patients presenting with muscular dystrophy and mental retardation. The clinical outcome of MCMD patients seems to be influenced by CHKB molecular defects. Histological and ultrastructural examination of muscle biopsy directed molecular studies and allowed the identification and characterization of an intronic mutation, usually escaping standard molecular testing.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":" ","pages":"23"},"PeriodicalIF":4.9,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9524117/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40383594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Mouse models of SMA show divergent patterns of neuronal vulnerability and resilience. 小鼠SMA模型显示出不同的神经元脆弱性和弹性模式。
IF 4.9 2区 医学
Skeletal Muscle Pub Date : 2022-09-12 DOI: 10.1186/s13395-022-00305-9
Victoria Woschitz, Irene Mei, Eva Hedlund, Lyndsay M Murray
{"title":"Mouse models of SMA show divergent patterns of neuronal vulnerability and resilience.","authors":"Victoria Woschitz,&nbsp;Irene Mei,&nbsp;Eva Hedlund,&nbsp;Lyndsay M Murray","doi":"10.1186/s13395-022-00305-9","DOIUrl":"https://doi.org/10.1186/s13395-022-00305-9","url":null,"abstract":"<p><strong>Background: </strong>Spinal muscular atrophy (SMA) is a form of motor neuron disease affecting primarily children characterised by the loss of lower motor neurons (MNs). Breakdown of the neuromuscular junctions (NMJs) is an early pathological event in SMA. However, not all motor neurons are equally vulnerable, with some populations being lost early in the disease while others remain intact at the disease end-stage. A thorough understanding of the basis of this selective vulnerability will give critical insight into the factors which prohibit pathology in certain motor neuron populations and consequently help identify novel neuroprotective strategies.</p><p><strong>Methods: </strong>To retrieve a comprehensive understanding of motor neuron susceptibility in SMA, we mapped NMJ pathology in 20 muscles from the Smn<sup>2B/-</sup> SMA mouse model and cross-compared these data with published data from three other commonly used mouse models. To gain insight into the molecular mechanisms regulating selective resilience and vulnerability, we analysed published RNA sequencing data acquired from differentially vulnerable motor neurons from two different SMA mouse models.</p><p><strong>Results: </strong>In the Smn<sup>2B/-</sup> mouse model of SMA, we identified substantial NMJ loss in the muscles from the core, neck, proximal hind limbs and proximal forelimbs, with a marked reduction in denervation in the distal limbs and head. Motor neuron cell body loss was greater at T5 and T11 compared with L5. We subsequently show that although widespread denervation is observed in each SMA mouse model (with the notable exception of the Taiwanese model), all models have a distinct pattern of selective vulnerability. A comparison of previously published data sets reveals novel transcripts upregulated with a disease in selectively resistant motor neurons, including genes involved in axonal transport, RNA processing and mitochondrial bioenergetics.</p><p><strong>Conclusions: </strong>Our work demonstrates that the Smn<sup>2B/-</sup> mouse model shows a pattern of selective vulnerability which bears resemblance to the regional pathology observed in SMA patients. We found drastic differences in patterns of selective vulnerability across the four SMA mouse models, which is critical to consider during experimental design. We also identified transcript groups that potentially contribute to the protection of certain motor neurons in SMA mouse models.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":" ","pages":"22"},"PeriodicalIF":4.9,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9465884/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33464624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Identification of the co-differentially expressed hub genes involved in the endogenous protective mechanism against ventilator-induced diaphragm dysfunction. 鉴定参与呼吸机诱导膈肌功能障碍内源性保护机制的共差异表达枢纽基因。
IF 4.9 2区 医学
Skeletal Muscle Pub Date : 2022-09-09 DOI: 10.1186/s13395-022-00304-w
Dong Zhang, Wenyan Hao, Qi Niu, Dongdong Xu, Xuejiao Duan
{"title":"Identification of the co-differentially expressed hub genes involved in the endogenous protective mechanism against ventilator-induced diaphragm dysfunction.","authors":"Dong Zhang,&nbsp;Wenyan Hao,&nbsp;Qi Niu,&nbsp;Dongdong Xu,&nbsp;Xuejiao Duan","doi":"10.1186/s13395-022-00304-w","DOIUrl":"https://doi.org/10.1186/s13395-022-00304-w","url":null,"abstract":"<p><strong>Background: </strong>In intensive care units (ICU), mechanical ventilation (MV) is commonly applied to save patients' lives. However, ventilator-induced diaphragm dysfunction (VIDD) can complicate treatment by hindering weaning in critically ill patients and worsening outcomes. The goal of this study was to identify potential genes involved in the endogenous protective mechanism against VIDD.</p><p><strong>Methods: </strong>Twelve adult male rabbits were assigned to either an MV group or a control group under the same anesthetic conditions. Immunostaining and quantitative morphometry were used to assess diaphragm atrophy, while RNA-seq was used to investigate molecular differences between the groups. Additionally, core module and hub genes were analyzed using WGCNA, and co-differentially expressed hub genes were subsequently discovered by overlapping the differentially expressed genes (DEGs) with the hub genes from WGCNA. The identified genes were validated by western blotting (WB) and quantitative real-time polymerase chain reaction (qRT-PCR).</p><p><strong>Results: </strong>After a VIDD model was successfully built, 1276 DEGs were found between the MV and control groups. The turquoise and yellow modules were identified as the core modules, and Trim63, Fbxo32, Uchl1, Tmprss13, and Cst3 were identified as the five co-differentially expressed hub genes. After the two atrophy-related genes (Trim63 and Fbxo32) were excluded, the levels of the remaining three genes/proteins (Uchl1/UCHL1, Tmprss13/TMPRSS13, and Cst3/CST3) were found to be significantly elevated in the MV group (P < 0.05), suggesting the existence of a potential antiproteasomal, antiapoptotic, and antiautophagic mechanism against diaphragm dysfunction.</p><p><strong>Conclusion: </strong>The current research helps to reveal a potentially important endogenous protective mechanism that could serve as a novel therapeutic target against VIDD.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":" ","pages":"21"},"PeriodicalIF":4.9,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9461262/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33460739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prolonged FOS activity disrupts a global myogenic transcriptional program by altering 3D chromatin architecture in primary muscle progenitor cells. 长时间的 FOS 活性通过改变原生肌肉祖细胞的三维染色质结构,破坏了全局性的成肌转录程序。
IF 4.9 2区 医学
Skeletal Muscle Pub Date : 2022-08-15 DOI: 10.1186/s13395-022-00303-x
A Rasim Barutcu, Gabriel Elizalde, Alfredo E Gonzalez, Kartik Soni, John L Rinn, Amy J Wagers, Albert E Almada
{"title":"Prolonged FOS activity disrupts a global myogenic transcriptional program by altering 3D chromatin architecture in primary muscle progenitor cells.","authors":"A Rasim Barutcu, Gabriel Elizalde, Alfredo E Gonzalez, Kartik Soni, John L Rinn, Amy J Wagers, Albert E Almada","doi":"10.1186/s13395-022-00303-x","DOIUrl":"10.1186/s13395-022-00303-x","url":null,"abstract":"<p><strong>Background: </strong>The AP-1 transcription factor, FBJ osteosarcoma oncogene (FOS), is induced in adult muscle satellite cells (SCs) within hours following muscle damage and is required for effective stem cell activation and muscle repair. However, why FOS is rapidly downregulated before SCs enter cell cycle as progenitor cells (i.e., transiently expressed) remains unclear. Further, whether boosting FOS levels in the proliferating progeny of SCs can enhance their myogenic properties needs further evaluation.</p><p><strong>Methods: </strong>We established an inducible, FOS expression system to evaluate the impact of persistent FOS activity in muscle progenitor cells ex vivo. We performed various assays to measure cellular proliferation and differentiation, as well as uncover changes in RNA levels and three-dimensional (3D) chromatin interactions.</p><p><strong>Results: </strong>Persistent FOS activity in primary muscle progenitor cells severely antagonizes their ability to differentiate and form myotubes within the first 2 weeks in culture. RNA-seq analysis revealed that ectopic FOS activity in muscle progenitor cells suppressed a global pro-myogenic transcriptional program, while activating a stress-induced, mitogen-activated protein kinase (MAPK) transcriptional signature. Additionally, we observed various FOS-dependent, chromosomal re-organization events in A/B compartments, topologically associated domains (TADs), and genomic loops near FOS-regulated genes.</p><p><strong>Conclusions: </strong>Our results suggest that elevated FOS activity in recently activated muscle progenitor cells perturbs cellular differentiation by altering the 3D chromosome organization near critical pro-myogenic genes. This work highlights the crucial importance of tightly controlling FOS expression in the muscle lineage and suggests that in states of chronic stress or disease, persistent FOS activity in muscle precursor cells may disrupt the muscle-forming process.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"12 1","pages":"20"},"PeriodicalIF":4.9,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9377060/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9838031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信