Skeletal Muscle最新文献

筛选
英文 中文
A GDF11/myostatin inhibitor, GDF11 propeptide-Fc, increases skeletal muscle mass and improves muscle strength in dystrophic mdx mice. GDF11/肌肉生长抑制素抑制剂GDF11前肽- fc可增加营养不良mdx小鼠的骨骼肌质量并改善肌肉力量。
IF 4.9 2区 医学
Skeletal Muscle Pub Date : 2019-05-27 DOI: 10.1186/s13395-019-0197-y
Quan Jin, Chunping Qiao, Jianbin Li, Bin Xiao, Juan Li, Xiao Xiao
{"title":"A GDF11/myostatin inhibitor, GDF11 propeptide-Fc, increases skeletal muscle mass and improves muscle strength in dystrophic mdx mice.","authors":"Quan Jin,&nbsp;Chunping Qiao,&nbsp;Jianbin Li,&nbsp;Bin Xiao,&nbsp;Juan Li,&nbsp;Xiao Xiao","doi":"10.1186/s13395-019-0197-y","DOIUrl":"https://doi.org/10.1186/s13395-019-0197-y","url":null,"abstract":"<p><strong>Background: </strong>Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor β superfamily. The GDF11 propeptide, which is derived from the GDF11 precursor protein, blocks the activity of GDF11 and its homolog, myostatin, which are both potent inhibitors of muscle growth. Thus, treatment with GDF11 propeptide may be a potential therapeutic strategy for diseases associated with muscle atrophy like sarcopenia and the muscular dystrophies. Here, we evaluate the impact of GDF11 propeptide-Fc (GDF11PRO-Fc) gene delivery on skeletal muscle in normal and dystrophic adult mice.</p><p><strong>Methods: </strong>A pull-down assay was used to obtain physical confirmation of a protein-protein interaction between GDF11PRO-Fc and GDF11 or myostatin. Next, differentiated C2C12 myotubes were treated with AAV6-GDF11PRO-Fc and challenged with GDF11 or myostatin to determine if GDF11PRO-Fc could block GDF11/myostatin-induced myotube atrophy. Localized expression of GDF11PRO-Fc was evaluated via a unilateral intramuscular injection of AAV9-GDF11PRO-Fc into the hindlimb of C57BL/6J mice. In mdx mice, intravenous injection of AAV9-GDF11PRO-Fc was used to achieve systemic expression. The impact of GDF11PRO-Fc on muscle mass, function, and pathological features were assessed.</p><p><strong>Results: </strong>GDF11PRO-Fc was observed to bind both GDF11 and myostatin. In C2C12 myotubes, expression of GDF11PRO-Fc was able to mitigate GDF11/myostatin-induced atrophy. Following intramuscular injection in C57BL/6J mice, increased grip strength and localized muscle hypertrophy were observed in the injected hindlimb after 10 weeks. In mdx mice, systemic expression of GDF11PRO-Fc resulted in skeletal muscle hypertrophy without a significant change in cardiac mass after 12 weeks. In addition, grip strength and rotarod latency time were improved. Intramuscular fibrosis was also reduced in treated mdx mice; however, there was no change seen in central nucleation, membrane permeability to serum IgG or serum creatine kinase levels.</p><p><strong>Conclusions: </strong>GDF11PRO-Fc induces skeletal muscle hypertrophy and improvements in muscle strength via inhibition of GDF11/myostatin signaling. However, GDF11PRO-Fc does not significantly improve the dystrophic pathology in mdx mice.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"9 1","pages":"16"},"PeriodicalIF":4.9,"publicationDate":"2019-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13395-019-0197-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37001830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 28
Automated image-analysis method for the quantification of fiber morphometry and fiber type population in human skeletal muscle. 用于人体骨骼肌纤维形态测定和纤维类型种群定量的自动图像分析方法。
IF 4.9 2区 医学
Skeletal Muscle Pub Date : 2019-05-27 DOI: 10.1186/s13395-019-0200-7
Perla C Reyes-Fernandez, Baptiste Periou, Xavier Decrouy, Fréderic Relaix, François Jérôme Authier
{"title":"Automated image-analysis method for the quantification of fiber morphometry and fiber type population in human skeletal muscle.","authors":"Perla C Reyes-Fernandez,&nbsp;Baptiste Periou,&nbsp;Xavier Decrouy,&nbsp;Fréderic Relaix,&nbsp;François Jérôme Authier","doi":"10.1186/s13395-019-0200-7","DOIUrl":"https://doi.org/10.1186/s13395-019-0200-7","url":null,"abstract":"<p><strong>Background: </strong>The quantitative analysis of muscle histomorphometry has been growing in importance in both research and clinical settings. Accurate and stringent assessment of myofibers' changes in size and number, and alterations in the proportion of oxidative (type I) and glycolytic (type II) fibers is essential for the appropriate study of aging and pathological muscle, as well as for diagnosis and follow-up of muscle diseases. Manual and semi-automated methods to assess muscle morphometry in sections are time-consuming, limited to a small field of analysis, and susceptible to bias, while most automated methods have been only tested in rodent muscle.</p><p><strong>Methods: </strong>We developed a new macro script for Fiji-ImageJ to automatically assess human fiber morphometry in digital images of the entire muscle. We tested the functionality of our method in deltoid muscle biopsies from a heterogeneous population of subjects with histologically normal muscle (male, female, old, young, lean, obese) and patients with dermatomyositis, necrotizing autoimmune myopathy, and anti-synthetase syndrome myopathy.</p><p><strong>Results: </strong>Our macro is fully automated, requires no user intervention, and demonstrated improved fiber segmentation by running a series of image pre-processing steps before the analysis. Likewise, our tool showed high accuracy, as compared with manual methods, for identifying the total number of fibers (r = 0.97, p < 0.001), fiber I and fiber II proportion (r = 0.92, p < 0.001), and minor diameter (r = 0.86, p < 0.001) while conducting analysis in ~ 5 min/sample. The performance of the macro analysis was maintained in pectoral and deltoid samples from subjects of different age, gender, body weight, and muscle status. The output of the analyses includes excel files with the quantification of fibers' morphometry and color-coded maps based on the fiber's size, which proved to be an advantageous feature for the fast and easy visual identification of location-specific atrophy and a potential tool for medical diagnosis.</p><p><strong>Conclusion: </strong>Our macro is reliable and suitable for the study of human skeletal muscle for research and for diagnosis in clinical settings providing reproducible and consistent analysis when the time is of the utmost importance.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"9 1","pages":"15"},"PeriodicalIF":4.9,"publicationDate":"2019-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13395-019-0200-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37015630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 26
Targeted ablation of the cellular inhibitor of apoptosis 1 (cIAP1) attenuates denervation-induced skeletal muscle atrophy. 靶向消融细胞凋亡抑制剂1 (cIAP1)可减轻去神经支配诱导的骨骼肌萎缩。
IF 4.9 2区 医学
Skeletal Muscle Pub Date : 2019-05-24 DOI: 10.1186/s13395-019-0201-6
Neena Lala-Tabbert, Rim Lejmi-Mrad, Kristen Timusk, Marina Fukano, Janelle Holbrook, Martine St-Jean, Eric C LaCasse, Robert G Korneluk
{"title":"Targeted ablation of the cellular inhibitor of apoptosis 1 (cIAP1) attenuates denervation-induced skeletal muscle atrophy.","authors":"Neena Lala-Tabbert,&nbsp;Rim Lejmi-Mrad,&nbsp;Kristen Timusk,&nbsp;Marina Fukano,&nbsp;Janelle Holbrook,&nbsp;Martine St-Jean,&nbsp;Eric C LaCasse,&nbsp;Robert G Korneluk","doi":"10.1186/s13395-019-0201-6","DOIUrl":"https://doi.org/10.1186/s13395-019-0201-6","url":null,"abstract":"<p><strong>Background: </strong>Skeletal muscle atrophy is a pathological condition that contributes to morbidity in a variety of conditions including denervation, cachexia, and aging. Muscle atrophy is characterized as decreased muscle fiber cross-sectional area and protein content due, in part, to the proteolytic activities of two muscle-specific E3 ubiquitin ligases: muscle RING-finger 1 (MuRF1) and muscle atrophy F-box (MAFbx or Atrogin-1). The nuclear factor-kappa B (NF-κB) pathway has emerged as a critical signaling network in skeletal muscle atrophy and has become a prime therapeutic target for the treatment of muscle diseases. Unfortunately, none of the NF-κB targeting drugs are currently being used to treat these diseases, likely because of our limited knowledge and specificity, for muscle biology and disease. The cellular inhibitor of apoptosis 1 (cIAP1) protein is a positive regulator of tumor necrosis factor alpha (TNFα)-mediated classical NF-κB signaling, and cIAP1 loss has been shown to enhance muscle regeneration during acute and chronic injury.</p><p><strong>Methods: </strong>Sciatic nerve transection in wild-type, cIAP1-null and Smac mimetic compound (SMC)-treated mice was performed to investigate the role of cIAP1 in denervation-induced atrophy. Genetic in vitro models of C2C12 myoblasts and primary myoblasts were also used to examine the role of classical NF-κB activity in cIAP1-induced myotube atrophy.</p><p><strong>Results: </strong>We found that cIAP1 expression was upregulated in denervated muscles compared to non-denervated controls 14 days after denervation. Genetic and pharmacological loss of cIAP1 attenuated denervation-induced muscle atrophy and overexpression of cIAP1 in myotubes was sufficient to induce atrophy. The induction of myotube atrophy by cIAP1 was attenuated when the classical NF-κB signaling pathway was inhibited.</p><p><strong>Conclusions: </strong>These results demonstrate the cIAP1 is an important mediator of NF-κB/MuRF1 signaling in skeletal muscle atrophy and is a promising therapeutic target for muscle wasting diseases.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"9 1","pages":"13"},"PeriodicalIF":4.9,"publicationDate":"2019-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13395-019-0201-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36995343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Preclinical rationale for entinostat in embryonal rhabdomyosarcoma. 恩替诺斯他治疗胚胎横纹肌肉瘤的临床前原理。
IF 5.3 2区 医学
Skeletal Muscle Pub Date : 2019-05-21 DOI: 10.1186/s13395-019-0198-x
Narendra Bharathy, Noah E Berlow, Eric Wang, Jinu Abraham, Teagan P Settelmeyer, Jody E Hooper, Matthew N Svalina, Zia Bajwa, Martin W Goros, Brian S Hernandez, Johannes E Wolff, Ranadip Pal, Angela M Davies, Arya Ashok, Darnell Bushby, Maria Mancini, Christopher Noakes, Neal C Goodwin, Peter Ordentlich, James Keck, Douglas S Hawkins, Erin R Rudzinski, Atiya Mansoor, Theodore J Perkins, Christopher R Vakoc, Joel E Michalek, Charles Keller
{"title":"Preclinical rationale for entinostat in embryonal rhabdomyosarcoma.","authors":"Narendra Bharathy, Noah E Berlow, Eric Wang, Jinu Abraham, Teagan P Settelmeyer, Jody E Hooper, Matthew N Svalina, Zia Bajwa, Martin W Goros, Brian S Hernandez, Johannes E Wolff, Ranadip Pal, Angela M Davies, Arya Ashok, Darnell Bushby, Maria Mancini, Christopher Noakes, Neal C Goodwin, Peter Ordentlich, James Keck, Douglas S Hawkins, Erin R Rudzinski, Atiya Mansoor, Theodore J Perkins, Christopher R Vakoc, Joel E Michalek, Charles Keller","doi":"10.1186/s13395-019-0198-x","DOIUrl":"10.1186/s13395-019-0198-x","url":null,"abstract":"<p><strong>Background: </strong>Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in the pediatric cancer population. Survival among metastatic RMS patients has remained dismal yet unimproved for years. We previously identified the class I-specific histone deacetylase inhibitor, entinostat (ENT), as a pharmacological agent that transcriptionally suppresses the PAX3:FOXO1 tumor-initiating fusion gene found in alveolar rhabdomyosarcoma (aRMS), and we further investigated the mechanism by which ENT suppresses PAX3:FOXO1 oncogene and demonstrated the preclinical efficacy of ENT in RMS orthotopic allograft and patient-derived xenograft (PDX) models. In this study, we investigated whether ENT also has antitumor activity in fusion-negative eRMS orthotopic allografts and PDX models either as a single agent or in combination with vincristine (VCR).</p><p><strong>Methods: </strong>We tested the efficacy of ENT and VCR as single agents and in combination in orthotopic allograft and PDX mouse models of eRMS. We then performed CRISPR screening to identify which HDAC among the class I HDACs is responsible for tumor growth inhibition in eRMS. To analyze whether ENT treatment as a single agent or in combination with VCR induces myogenic differentiation, we performed hematoxylin and eosin (H&E) staining in tumors.</p><p><strong>Results: </strong>ENT in combination with the chemotherapy VCR has synergistic antitumor activity in a subset of fusion-negative eRMS in orthotopic \"allografts,\" although PDX mouse models were too hypersensitive to the VCR dose used to detect synergy. Mechanistic studies involving CRISPR suggest that HDAC3 inhibition is the primary mechanism of cell-autonomous cytoreduction in eRMS. Following cytoreduction in vivo, residual tumor cells in the allograft models treated with chemotherapy undergo a dramatic, entinostat-induced (70-100%) conversion to non-proliferative rhabdomyoblasts.</p><p><strong>Conclusion: </strong>Our results suggest that the targeting class I HDACs may provide a therapeutic benefit for selected patients with eRMS. ENT's preclinical in vivo efficacy makes ENT a rational drug candidate in a phase II clinical trial for eRMS.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"9 1","pages":"12"},"PeriodicalIF":5.3,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6528217/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37262066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exogenous expression of the glycosyltransferase LARGE1 restores α-dystroglycan matriglycan and laminin binding in rhabdomyosarcoma. 外源性糖基转移酶LARGE1的表达恢复了横纹肌肉瘤中α-糖基蛋白和层粘连蛋白的结合。
IF 4.9 2区 医学
Skeletal Muscle Pub Date : 2019-05-04 DOI: 10.1186/s13395-019-0195-0
Daniel Beltrán, Mary E Anderson, Narendra Bharathy, Teagan P Settelmeyer, Matthew N Svalina, Zia Bajwa, John F Shern, Sakir H Gultekin, Marco A Cuellar, Takahiro Yonekawa, Charles Keller, Kevin P Campbell
{"title":"Exogenous expression of the glycosyltransferase LARGE1 restores α-dystroglycan matriglycan and laminin binding in rhabdomyosarcoma.","authors":"Daniel Beltrán,&nbsp;Mary E Anderson,&nbsp;Narendra Bharathy,&nbsp;Teagan P Settelmeyer,&nbsp;Matthew N Svalina,&nbsp;Zia Bajwa,&nbsp;John F Shern,&nbsp;Sakir H Gultekin,&nbsp;Marco A Cuellar,&nbsp;Takahiro Yonekawa,&nbsp;Charles Keller,&nbsp;Kevin P Campbell","doi":"10.1186/s13395-019-0195-0","DOIUrl":"https://doi.org/10.1186/s13395-019-0195-0","url":null,"abstract":"<p><strong>Background: </strong>α-Dystroglycan is the highly glycosylated component of the dystrophin-glycoprotein complex (DGC) that binds with high-affinity to extracellular matrix (ECM) proteins containing laminin-G-like (LG) domains via a unique heteropolysaccharide [-GlcA-beta1,3-Xyl-alpha1,3-]<sub>n</sub> called matriglycan. Changes in expression of components of the DGC or in the O-glycosylation of α-dystroglycan result in muscular dystrophy but are also observed in certain cancers. In mice, the loss of either of two DGC proteins, dystrophin or α-sarcoglycan, is associated with a high incidence of rhabdomyosarcoma (RMS). In addition, glycosylation of α-dystroglycan is aberrant in a small cohort of human patients with RMS. Since both the glycosylation of α-dystroglycan and its function as an ECM receptor require over 18 post-translational processing enzymes, we hypothesized that understanding its role in the pathogenesis of RMS requires a complete analysis of the expression of dystroglycan-modifying enzymes and the characterization of α-dystroglycan glycosylation in the context of RMS.</p><p><strong>Methods: </strong>A series of cell lines and biopsy samples from human and mouse RMS were analyzed for the glycosylation status of α-dystroglycan and for expression of the genes encoding the responsible enzymes, in particular those required for the addition of matriglycan. Furthermore, the glycosyltransferase LARGE1 was ectopically expressed in RMS cells to determine its effects on matriglycan modifications and the ability of α-dystroglycan to function as a laminin receptor.</p><p><strong>Results: </strong>Immunohistochemistry and immunoblotting of a collection of primary RMS tumors show that although α-dystroglycan is consistently expressed and glycosylated in these tumors, α-dystroglycan lacks matriglycan and the ability to bind laminin. Similarly, in a series of cell lines derived from human and mouse RMS, α-dystroglycan lacks matriglycan modification and the ability to bind laminin. RNAseq data from RMS cell lines was analyzed for expression of the genes known to be involved in α-dystroglycan glycosylation, which revealed that, for most cell lines, the lack of matriglycan can be attributed to the downregulation of the dystroglycan-modifying enzyme LARGE1. Ectopic expression of LARGE1 in these cell cultures restored matriglycan to levels comparable to those in muscle and restored high-affinity laminin binding to α-dystroglycan.</p><p><strong>Conclusions: </strong>Collectively, our findings demonstrate that a lack of matriglycan on α-dystroglycan is a common feature in RMS due to the downregulation of LARGE1, and that ectopic expression of LARGE1 can restore matriglycan modifications and the ability of α-dystroglycan to function as an ECM receptor.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"9 1","pages":"11"},"PeriodicalIF":4.9,"publicationDate":"2019-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13395-019-0195-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37211067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Muscle Gene Sets: a versatile methodological aid to functional genomics in the neuromuscular field. 肌肉基因集:神经肌肉领域功能基因组学的通用方法学辅助。
IF 4.9 2区 医学
Skeletal Muscle Pub Date : 2019-05-03 DOI: 10.1186/s13395-019-0196-z
Apostolos Malatras, Stephanie Duguez, William Duddy
{"title":"Muscle Gene Sets: a versatile methodological aid to functional genomics in the neuromuscular field.","authors":"Apostolos Malatras,&nbsp;Stephanie Duguez,&nbsp;William Duddy","doi":"10.1186/s13395-019-0196-z","DOIUrl":"10.1186/s13395-019-0196-z","url":null,"abstract":"<p><strong>Background: </strong>The approach of building large collections of gene sets and then systematically testing hypotheses across these collections is a powerful tool in functional genomics, both in the pathway analysis of omics data and to uncover the polygenic effects associated with complex diseases in genome-wide association study. The Molecular Signatures Database includes collections of oncogenic and immunologic signatures enabling researchers to compare transcriptional datasets across hundreds of previous studies and leading to important insights in these fields, but such a resource does not currently exist for neuromuscular research. In previous work, we have shown the utility of gene set approaches to understand muscle cell physiology and pathology.</p><p><strong>Methods: </strong>Following a systematic survey of public muscle data, we passed gene expression profiles from 4305 samples through a robust pre-processing and standardized data analysis pipeline. Two hundred eighty-two samples were discarded based on a battery of rigorous global quality controls. From among the remaining studies, 578 comparisons of interest were identified by a combination of text mining and manual curation of the study meta-data. For each comparison, significantly dysregulated genes (FDR adjusted p < 0.05) were identified.</p><p><strong>Results: </strong>Lists of dysregulated genes were divided between upregulated and downregulated to give 1156 Muscle Gene Sets (MGS). This resource is available for download ( www.sys-myo.com/muscle_gene_sets ) and is accessible through three commonly used functional genomics platforms (GSEA, EnrichR, and WebGestalt). Basic guidance and recommendations are provided for the use of MGS through these platforms. In addition, consensus muscle gene sets were created to capture the overlap between the results of similar studies, and analysis of these highlighted the potential for novel disease-relevant findings.</p><p><strong>Conclusions: </strong>The MGS resource can be used to investigate the behaviour of any list of genes across previous comparisons of muscle conditions, to compare previous studies to one another, and to explore the functional relationship of muscle dysregulation to the Gene Ontology. Its major intended use is in enrichment testing for functional genomics analysis.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"9 1","pages":"10"},"PeriodicalIF":4.9,"publicationDate":"2019-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13395-019-0196-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37209501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
RNA-sequencing reveals altered skeletal muscle contraction, E3 ligases, autophagy, apoptosis, and chaperone expression in patients with critical illness myopathy. rna测序揭示了危重性肌病患者骨骼肌收缩、E3连接酶、自噬、细胞凋亡和伴侣蛋白表达的改变。
IF 4.9 2区 医学
Skeletal Muscle Pub Date : 2019-04-16 DOI: 10.1186/s13395-019-0194-1
Monica Llano-Diez, Wen Fury, Haruka Okamoto, Yu Bai, Jesper Gromada, Lars Larsson
{"title":"RNA-sequencing reveals altered skeletal muscle contraction, E3 ligases, autophagy, apoptosis, and chaperone expression in patients with critical illness myopathy.","authors":"Monica Llano-Diez,&nbsp;Wen Fury,&nbsp;Haruka Okamoto,&nbsp;Yu Bai,&nbsp;Jesper Gromada,&nbsp;Lars Larsson","doi":"10.1186/s13395-019-0194-1","DOIUrl":"https://doi.org/10.1186/s13395-019-0194-1","url":null,"abstract":"<p><strong>Background: </strong>Critical illness myopathy (CIM) is associated with severe skeletal muscle wasting and impaired function in intensive care unit (ICU) patients. The mechanisms underlying CIM remain incompletely understood. To elucidate the biological activities occurring at the transcriptional level in the skeletal muscle of ICU patients with CIM, the gene expression profiles, potential upstream regulators, and enrichment pathways were characterized using RNA sequencing (RNA-seq). We also compared the skeletal muscle gene signatures in ICU patients with CIM and genes perturbed by mechanical loading in one leg of the ICU patients, with an aim of reducing the loss of muscle function.</p><p><strong>Methods: </strong>RNA-seq was used to assess gene expression changes in tibialis anterior skeletal muscle samples from seven critically ill, immobilized, and mechanically ventilated ICU patients with CIM and matched control subjects. We also examined skeletal muscle gene expression for both legs of six ICU patients with CIM, where one leg was mechanically loaded for 10 h/day for an average of 9 days.</p><p><strong>Results: </strong>In total, 6257 of 17,221 detected genes were differentially expressed (84% upregulated; p < 0.05 and fold change ≥ 1.5) in skeletal muscle from ICU patients with CIM when compared to control subjects. The differentially expressed genes were highly associated with gene changes identified in patients with myopathy, sepsis, long-term inactivity, polymyositis, tumor, and repeat exercise resistance. Upstream regulator analysis revealed that the CIM signature could be a result of the activation of MYOD1, p38 MAPK, or treatment with dexamethasone. Passive mechanical loading only reversed expression of 0.74% of the affected genes (46 of 6257 genes).</p><p><strong>Conclusions: </strong>RNA-seq analysis revealed that the marked muscle atrophy and weakness observed in ICU patients with CIM were associated with the altered expression of genes involved in muscle contraction, newly identified E3 ligases, autophagy and calpain systems, apoptosis, and chaperone expression. In addition, MYOD1, p38 MAPK, and dexamethasone were identified as potential upstream regulators of skeletal muscle gene expression in ICU patients with CIM. Mechanical loading only marginally affected the skeletal muscle transcriptome profiling of ICU patients diagnosed with CIM.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"9 1","pages":"9"},"PeriodicalIF":4.9,"publicationDate":"2019-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13395-019-0194-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37334695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 33
IMB0901 inhibits muscle atrophy induced by cancer cachexia through MSTN signaling pathway. IMB0901通过MSTN信号通路抑制癌症恶病质诱导的肌肉萎缩。
IF 4.9 2区 医学
Skeletal Muscle Pub Date : 2019-03-28 DOI: 10.1186/s13395-019-0193-2
Dong Liu, Xinran Qiao, Zhijuan Ge, Yue Shang, Yi Li, Wendie Wang, Minghua Chen, Shuyi Si, Shu-Zhen Chen
{"title":"IMB0901 inhibits muscle atrophy induced by cancer cachexia through MSTN signaling pathway.","authors":"Dong Liu,&nbsp;Xinran Qiao,&nbsp;Zhijuan Ge,&nbsp;Yue Shang,&nbsp;Yi Li,&nbsp;Wendie Wang,&nbsp;Minghua Chen,&nbsp;Shuyi Si,&nbsp;Shu-Zhen Chen","doi":"10.1186/s13395-019-0193-2","DOIUrl":"https://doi.org/10.1186/s13395-019-0193-2","url":null,"abstract":"<p><strong>Background: </strong>Cancer cachexia as a metabolic syndrome can lead to at least 25% of cancer deaths. The inhibition of muscle atrophy is a main strategy to treat cancer cachexia. In this process, myostatin (MSTN) can exert a dual effect on protein metabolism, including inhibition of protein biosynthesis and enhancement of protein degradation. In this study, we will test the effect on muscle atrophy induced by cancer cachexia of IMB0901, a MSTN inhibitor.</p><p><strong>Methods: </strong>Two high-throughput screening models against MSTN were developed. By screening, IMB0901, 2-((1-(3,4-dichlorophenyl)-1H-pyrazolo [3,4-d] pyrimidin-4-yl) amino) butan-1-ol, was picked out from the compound library. The in vitro cell model and the C26 animal model of muscle atrophy induced by cancer cachexia were used to determine the pharmacological activity of IMB0901. Whether IMB0901 could inhibit the aggravating effect of doxorubicin on muscle wasting was examined in vitro and in vivo.</p><p><strong>Results: </strong>IMB0901 inhibited the MSTN promoter activity, the MSTN signaling pathway, and the MSTN positive feedback regulation. In atrophied C2C12 myotubes, IMB0901 had a potent efficiency of decreasing MSTN expression and modulating MSTN signaling pathway which was activated by C26-conditioned medium (CM). In C2C12 myotubes, the expressions of three common myotube markers, myosin heavy chain (MyHC), myogenic differentiation 1 (MyoD), and myogenin (MyoG), were downregulated by CM, which could be efficiently reversed by IMB0901 via reduction of ubiquitin-mediated proteolysis and enhancement of AKT/mTOR-mediated protein synthesis. In the C26 animal model, IMB0901 mitigated the weight loss of body, quadricep and liver, and protected the quadriceps cell morphology. Furthermore, IMB0901 decreased the expression of two E3 ligases Atrogin-1 and MuRF-1 in the quadriceps in vivo. At the cellular level, IMB0901 had no influence on anti-tumor effect of three chemotherapeutic agents (cisplatin, doxorubicin, and gemcitabine) and lowered doxorubicin-induced upregulation of MSTN in C2C12 myotubes. IMB0901 did not affect the inhibitory effect of doxorubicin on C26 tumor and delayed the weight loss of muscle and adipose tissue caused by C26 tumor and doxorubicin.</p><p><strong>Conclusions: </strong>IMB0901 inhibits muscle atrophy induced by cancer cachexia by suppressing ubiquitin-mediated proteolysis and promoting protein synthesis. These findings collectively suggest that IMB0901 is a promising leading compound for the management of muscle atrophy induced by cancer cachexia.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"9 1","pages":"8"},"PeriodicalIF":4.9,"publicationDate":"2019-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13395-019-0193-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37100562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
The ancient sarcomeric myosins found in specialized muscles. 在特殊肌肉中发现的古代肌球蛋白。
IF 5.3 2区 医学
Skeletal Muscle Pub Date : 2019-03-05 DOI: 10.1186/s13395-019-0192-3
Lindsey A Lee, Anastasia Karabina, Lindsey J Broadwell, Leslie A Leinwand
{"title":"The ancient sarcomeric myosins found in specialized muscles.","authors":"Lindsey A Lee, Anastasia Karabina, Lindsey J Broadwell, Leslie A Leinwand","doi":"10.1186/s13395-019-0192-3","DOIUrl":"10.1186/s13395-019-0192-3","url":null,"abstract":"<p><p>Striated muscles express an array of sarcomeric myosin motors that are tuned to accomplish specific tasks. Each myosin isoform found in muscle fibers confers unique contractile properties to the fiber in order to meet the demands of the muscle. The sarcomeric myosin heavy chain (MYH) genes expressed in the major cardiac and skeletal muscles have been studied for decades. However, three ancient myosins, MYH7b, MYH15, and MYH16, remained uncharacterized due to their unique expression patterns in common mammalian model organisms and due to their relatively recent discovery in these genomes. This article reviews the literature surrounding these three ancient sarcomeric myosins and the specialized muscles in which they are expressed. Further study of these ancient myosins and how they contribute to the functions of the specialized muscles may provide novel insight into the history of striated muscle evolution.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"9 1","pages":"7"},"PeriodicalIF":5.3,"publicationDate":"2019-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6402096/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37026772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Normal inflammation and regeneration of muscle following injury require osteopontin from both muscle and non-muscle cells. 损伤后肌肉的正常炎症和再生需要来自肌肉和非肌肉细胞的骨桥蛋白。
IF 4.9 2区 医学
Skeletal Muscle Pub Date : 2019-02-26 DOI: 10.1186/s13395-019-0190-5
Dimuthu K Wasgewatte Wijesinghe, Eleanor J Mackie, Charles N Pagel
{"title":"Normal inflammation and regeneration of muscle following injury require osteopontin from both muscle and non-muscle cells.","authors":"Dimuthu K Wasgewatte Wijesinghe,&nbsp;Eleanor J Mackie,&nbsp;Charles N Pagel","doi":"10.1186/s13395-019-0190-5","DOIUrl":"https://doi.org/10.1186/s13395-019-0190-5","url":null,"abstract":"<p><strong>Background: </strong>Osteopontin is secreted by skeletal muscle myoblasts and macrophages, and its expression is upregulated in muscle following injury. Osteopontin is present in many different structural forms, which vary in their expression patterns and effects on cells. Using a whole muscle autograft model of muscle injury in mice, we have previously shown that inflammation and regeneration of muscle following injury are delayed by the absence of osteopontin. The current study was undertaken to determine whether muscle or non-muscle cells provide the source of osteopontin required for its role in muscle regeneration.</p><p><strong>Methods: </strong>The extensor digitorum longus muscle of wild-type and osteopontin-null mice was removed and returned to its bed in the same animal (autograft) or placed in the corresponding location in an animal of the opposite genotype (allograft). Grafts were harvested at various times after surgery and analysed by histology, flow cytometry and quantitative polymerase chain reaction. Data were analysed using one- or two-way ANOVA or Kruskal-Wallis test.</p><p><strong>Results: </strong>Immunohistochemistry confirmed that osteopontin was expressed by macrophages in osteopontin-null muscle allografts in wild-type hosts and by myoblasts in wild-type allografts in osteopontin-null hosts. The decrease in muscle fibre number observed in wild-type autografts following grafting and the subsequent appearance of regenerating fibres were delayed in both types of allografts to a similar extent as in osteopontin-null autografts. Infiltration of neutrophils, macrophages and M1 and M2 macrophage subtypes were also delayed by lack of osteopontin in the muscle and/or host. While the proportion of macrophages showing the M1 phenotype was not affected, the proportion showing the M2 phenotype was decreased by osteopontin deficiency. Expression of tumour necrosis factor-α and interleukin-4 was lower in osteopontin-null than in wild-type autografts, and there was no difference between the osteopontin-null graft types.</p><p><strong>Conclusions: </strong>Osteopontins from muscle and non-muscle sources are equally important in the acute response of muscle to injury, and cannot substitute for each other, suggesting that they play distinct roles in regulation of cell behaviour. Future studies of mechanisms of osteopontin's roles in acute muscle inflammation and regeneration will need to investigate responses to osteopontins derived from both myoblasts and macrophages.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"9 1","pages":"6"},"PeriodicalIF":4.9,"publicationDate":"2019-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13395-019-0190-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37001695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信