Skeletal MusclePub Date : 2024-11-11DOI: 10.1186/s13395-024-00359-x
Rosa Nicolas, Marie-Ange Bonnin, Cédrine Blavet, Joana Esteves de Lima, Cécile Legallais, Delphine Duprez
{"title":"3D-environment and muscle contraction regulate the heterogeneity of myonuclei.","authors":"Rosa Nicolas, Marie-Ange Bonnin, Cédrine Blavet, Joana Esteves de Lima, Cécile Legallais, Delphine Duprez","doi":"10.1186/s13395-024-00359-x","DOIUrl":"10.1186/s13395-024-00359-x","url":null,"abstract":"<p><p>Skeletal muscle formation involves tight interactions between muscle cells and associated connective tissue fibroblasts. Every muscle displays the same type of organisation, they are innervated in the middle and attached at both extremities to tendons. Myonuclei are heterogeneous along myotubes and regionalised according to these middle and tip domains. During development, as soon as myotubes are formed, myonuclei at muscle tips facing developing tendons display their own molecular program. In addition to molecular heterogeneity, a subset of tip myonuclei has a fibroblastic origin different to the classical somitic origin, highlighting a cellular heterogeneity of myonuclei in foetal myotubes. To gain insights on the functional relevance of myonucleus heterogeneity during limb development, we used 2D culture and co-culture systems to dissociate autonomous processes (occurring in 2D-cultures) from 3D-environment of tissue development. We also assessed the role of muscle contraction in myonucleus heterogeneity in paralysed limb muscles. The regionalisation of cellular heterogeneity was not observed in 2D cell culture systems and paralyzed muscles. The molecular signature of MTJ myonuclei was lost in a dish and paralysed muscles indicating a requirement of 3D-enviroment and muscle contraction for MTJ formation. Tip genes that maintain a regionalized expression at myotube tips in cultures are linked to sarcomeres. The behaviour of regionalized markers in cultured myotubes and paralyzed muscles allows us to speculate whether the genes intervene in myogenesis, myotube attachment or MTJ formation.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"14 1","pages":"27"},"PeriodicalIF":5.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552141/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Skeletal MusclePub Date : 2024-10-29DOI: 10.1186/s13395-024-00358-y
Mackenzie L Davenport, Amaya Fong, Kaela N Albury, C Spencer Henley-Beasley, Elisabeth R Barton, Malcolm Maden, Maurice S Swanson
{"title":"Spiny mice are primed but fail to regenerate volumetric skeletal muscle loss injuries.","authors":"Mackenzie L Davenport, Amaya Fong, Kaela N Albury, C Spencer Henley-Beasley, Elisabeth R Barton, Malcolm Maden, Maurice S Swanson","doi":"10.1186/s13395-024-00358-y","DOIUrl":"10.1186/s13395-024-00358-y","url":null,"abstract":"<p><strong>Background: </strong>In recent years, the African spiny mouse Acomys cahirinus has been shown to regenerate a remarkable array of severe internal and external injuries in the absence of a fibrotic response, including the ability to regenerate full-thickness skin excisions, ear punches, severe kidney injuries, and complete transection of the spinal cord. While skeletal muscle is highly regenerative in adult mammals, Acomys displays superior muscle regeneration properties compared with standard laboratory mice following several injuries, including serial cardiotoxin injections of skeletal muscle and volumetric muscle loss (VML) of the panniculus carnosus muscle following full-thickness excision injuries. VML is an extreme muscle injury defined as the irrecoverable ablation of muscle mass, most commonly resulting from combat injuries or surgical debridement. Barriers to the treatment of VML injury include early and prolonged inflammatory responses that promote fibrotic repair and the loss of structural and mechanical cues that promote muscle regeneration. While the regeneration of the panniculus carnosus in Acomys is impressive, its direct relevance to the study of VML in patients is less clear as this muscle has largely been lost in humans, and, while striated, is not a true skeletal muscle. We therefore sought to test the ability of Acomys to regenerate a skeletal muscle more commonly used in VML injury models.</p><p><strong>Methods: </strong>We performed two different VML injuries of the Acomys tibialis anterior muscle and compared the regenerative response to a standard laboratory mouse strain, Mus C57BL6/J.</p><p><strong>Results: </strong>Neither Acomys nor Mus recovered lost muscle mass or myofiber number within three months following VML injury, and Acomys also failed to recover force production better than Mus. In contrast, Acomys continued to express eMHC within the injured area even three months following injury, whereas Mus ceased expressing eMHC less than one-month post-injury, suggesting that Acomys muscle was primed, but failed, to regenerate.</p><p><strong>Conclusions: </strong>While the panniculus carnosus muscle in Acomys regenerates following VML injury in the context of full-thickness skin excision, this regenerative ability does not translate to regenerative repair of a skeletal muscle.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"14 1","pages":"26"},"PeriodicalIF":5.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520498/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Decreased number of satellite cells-derived myonuclei in both fast- and slow-twitch muscles in HeyL-KO mice during voluntary running exercise.","authors":"Kanako Iwamori, Manami Kubota, Lidan Zhang, Kazuki Kodama, Atsushi Kubo, Hiroki Kokubo, Takayuki Akimoto, So-Ichiro Fukada","doi":"10.1186/s13395-024-00357-z","DOIUrl":"10.1186/s13395-024-00357-z","url":null,"abstract":"<p><strong>Background: </strong>Skeletal muscles possess unique abilities known as adaptation or plasticity. When exposed to external stimuli, such as mechanical loading, both myofiber size and myonuclear number increase. Muscle stem cells, also known as muscle satellite cells (MuSCs), play vital roles in these changes. HeyL, a direct target of Notch signaling, is crucial for efficient muscle hypertrophy because it ensures MuSC proliferation in surgically overloaded muscles by inhibiting the premature differentiation. However, it remains unclear whether HeyL is essential for MuSC expansion in physiologically exercised muscles. Additionally, the influence of myofiber type on the requirement for HeyL in MuSCs within exercised muscles remains unclear.</p><p><strong>Methods: </strong>We used a voluntary wheel running model and HeyL-knockout mice to investigate the impact of HeyL deficiency on MuSC-derived myonuclei, MuSC behavior, muscle weight, myofiber size, and myofiber type in the running mice.</p><p><strong>Results: </strong>The number of new MuSC-derived myonuclei was significantly lower in both slow-twitch soleus and fast-twitch plantaris muscles from exercised HeyL-knockout mice than in control mice. However, expect for the frequency of Type IIb myofiber in plantaris muscle, exercised HeyL-knockout mice exhibited similar responses to control mice regarding myofiber size and type.</p><p><strong>Conclusions: </strong>HeyL expression is crucial for MuSC expansion during physiological exercise in both slow and fast muscles. The frequency of Type IIb myofiber in plantaris muscle of HeyL-knockout mice was not significantly reduced compared to that of control mice. However, the absence of HeyL did not affect the increased size and frequency of Type IIa myofiber in plantaris muscles. In this model, no detectable changes in myofiber size or type were observed in the soleus muscles of either control or HeyL-knockout mice. These findings imply that the requirement for MuSCs in the wheel-running model is difficult to observe due to the relatively low degree of hypertrophy compared to surgically overloaded models.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"14 1","pages":"25"},"PeriodicalIF":5.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515490/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142507460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Skeletal MusclePub Date : 2024-10-18DOI: 10.1186/s13395-024-00354-2
Mamata Chaudhari, Igor Zelko, Pawel Lorkiewicz, David Hoetker, Yibing Nong, Benjamin Doelling, Kenneth Brittian, Aruni Bhatnagar, Sanjay Srivastava, Shahid P Baba
{"title":"Metabolic pathways for removing reactive aldehydes are diminished in the skeletal muscle during heart failure.","authors":"Mamata Chaudhari, Igor Zelko, Pawel Lorkiewicz, David Hoetker, Yibing Nong, Benjamin Doelling, Kenneth Brittian, Aruni Bhatnagar, Sanjay Srivastava, Shahid P Baba","doi":"10.1186/s13395-024-00354-2","DOIUrl":"10.1186/s13395-024-00354-2","url":null,"abstract":"<p><p>Muscle wasting is a serious complication in heart failure patients. Oxidative stress and inflammation are implicated in the pathogenesis of muscle wasting. Oxidative stress leads to the formation of toxic lipid peroxidation products, such as 4-hydroxy-2-nonenal (HNE), which covalently bind with proteins and DNA and activate atrophic pathways. Whether the formation of lipid peroxidation products and metabolic pathways that remove these toxic products are affected during heart failure-associated skeletal muscle wasting has never been studied. Male C57BL/6J mice were subjected to sham and transverse aortic constriction (TAC) surgeries for 4, 8 or 14 weeks. Different skeletal muscle beds were weighed, and the total cross-sectional area of the gastrocnemius muscle was measured via immunohistochemistry. Muscle function and muscle stiffness were measured by a grip strength meter and atomic force microscope, respectively. Atrophic and inflammatory marker levels were measured via qRT‒PCR. The levels of acrolein and HNE-protein adducts, aldehyde-removing enzymes, the histidyl dipeptide-synthesizing enzyme carnosine synthase (CARNS), and amino acid transporters in the gastrocnemius muscle were measured via Western blotting and qRT‒PCR. Histidyl dipeptides and histidyl dipeptide aldehyde conjugates in the Gastrocnemius and soleus muscles were analyzed by LC/MS-MS. Body weight, gastrocnemius muscle and soleus muscle weights and the total cross-sectional area of the gastrocnemius muscle were decreased after 14 weeks of TAC. Heart weight, cardiac function, grip strength and muscle stiffness were decreased in the TAC-operated mice. Expression of the atrophic and inflammatory markers Atrogin1 and TNF-α, respectively, was increased ~ 1.5-2fold in the gastrocnemius muscle after 14 weeks of TAC (p < 0.05 and p = 0.004 vs sham). The formation of HNE and acrolein protein adducts was increased, and the expression of the aldehyde-removing enzyme aldehyde dehydrogenase (ALDH2) was decreased in the gastrocnemius muscle of TAC mice. Carnosine (sham: 5.76 ± 1.3 vs TAC: 4.72 ± 0.7 nmol/mg tissue, p = 0.04) and total histidyl dipeptide levels (carnosine and anserine; sham: 11.97 ± 1.5 vs TAC: 10.13 ± 1.4 nmol/mg tissue, p < 0.05) were decreased in the gastrocnemius muscle of TAC mice. Depletion of histidyl dipeptides diminished the aldehyde removal capacity of the atrophic gastrocnemius muscle. Furthermore, CARNS and TAUT protein expression were decreased in the atrophic gastrocnemius muscle. Our data reveals that reduced expression of ALDH2 and depletion of histidyl dipeptides in the gastrocnemius muscle during heart failure leads to the accumulation of toxic aldehydes and might contribute to muscle wasting.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"14 1","pages":"24"},"PeriodicalIF":5.3,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488087/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142474241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Skeletal MusclePub Date : 2024-10-14DOI: 10.1186/s13395-024-00356-0
Gareth Hazell, Eve McCallion, Nina Ahlskog, Emma R Sutton, Magnus Okoh, Emad I H Shaqoura, Joseph M Hoolachan, Taylor Scaife, Sara Iqbal, Amarjit Bhomra, Anna J Kordala, Frederique Scamps, Cedric Raoul, Matthew J A Wood, Melissa Bowerman
{"title":"Exercise, disease state and sex influence the beneficial effects of Fn14-depletion on survival and muscle pathology in the SOD1<sup>G93A</sup> amyotrophic lateral sclerosis (ALS) mouse model.","authors":"Gareth Hazell, Eve McCallion, Nina Ahlskog, Emma R Sutton, Magnus Okoh, Emad I H Shaqoura, Joseph M Hoolachan, Taylor Scaife, Sara Iqbal, Amarjit Bhomra, Anna J Kordala, Frederique Scamps, Cedric Raoul, Matthew J A Wood, Melissa Bowerman","doi":"10.1186/s13395-024-00356-0","DOIUrl":"https://doi.org/10.1186/s13395-024-00356-0","url":null,"abstract":"<p><strong>Background: </strong>Amyotrophic lateral sclerosis (ALS) is a devastating and incurable neurodegenerative disease. Accumulating evidence strongly suggests that intrinsic muscle defects exist and contribute to disease progression, including imbalances in whole-body metabolic homeostasis. We have previously reported that tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) and fibroblast growth factor inducible 14 (Fn14) are significantly upregulated in skeletal muscle of the SOD1<sup>G93A</sup> ALS mouse model. While antagonising TWEAK did not impact survival, we did observe positive effects in skeletal muscle. Given that Fn14 has been proposed as the main effector of the TWEAK/Fn14 activity and that Fn14 can act independently from TWEAK in muscle, we suggest that manipulating Fn14 instead of TWEAK in the SOD1<sup>G93A</sup> ALS mice could lead to differential and potentially improved benefits.</p><p><strong>Methods: </strong>We thus investigated the contribution of Fn14 to disease phenotypes in the SOD1<sup>G93A</sup> ALS mice. To do so, Fn14 knockout mice (Fn14<sup>-/-</sup>) were crossed onto the SOD1<sup>G93A</sup> background to generate SOD1<sup>G93A</sup>;Fn14<sup>-/-</sup> mice. Investigations were performed on both unexercised and exercised (rotarod and/or grid test) animals (wild type (WT), Fn14<sup>-/-</sup>, SOD1<sup>G93A</sup> and SOD1<sup>G93A</sup>;Fn14<sup>-/-</sup>).</p><p><strong>Results: </strong>Here, we firstly confirm that the TWEAK/Fn14 pathway is dysregulated in skeletal muscle of SOD1<sup>G93A</sup> mice. We then show that Fn14-depleted SOD1<sup>G93A</sup> mice display increased lifespan, myofiber size, neuromuscular junction endplate area as well as altered expression of known molecular effectors of the TWEAK/Fn14 pathway, without an impact on motor function. Importantly, we also observe a complex interaction between exercise (rotarod and grid test), genotype, disease state and sex that influences the overall effects of Fn14 deletion on survival, expression of known molecular effectors of the TWEAK/Fn14 pathway, expression of myosin heavy chain isoforms and myofiber size.</p><p><strong>Conclusions: </strong>Our study provides further insights on the different roles of the TWEAK/Fn14 pathway in pathological skeletal muscle and how they can be influenced by age, disease, sex and exercise. This is particularly relevant in the ALS field, where combinatorial therapies that include exercise regimens are currently being explored. As such, a better understanding and consideration of the interactions between treatments, muscle metabolism, sex and exercise will be of importance in future studies.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"14 1","pages":"23"},"PeriodicalIF":5.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472643/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142474231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Skeletal MusclePub Date : 2024-10-11DOI: 10.1186/s13395-024-00355-1
Uxia Gurriaran-Rodriguez, Yves De Repentigny, Rashmi Kothary, Michael A Rudnicki
{"title":"Isolation of small extracellular vesicles from regenerating muscle tissue using tangential flow filtration and size exclusion chromatography.","authors":"Uxia Gurriaran-Rodriguez, Yves De Repentigny, Rashmi Kothary, Michael A Rudnicki","doi":"10.1186/s13395-024-00355-1","DOIUrl":"10.1186/s13395-024-00355-1","url":null,"abstract":"<p><p>We have recently made the strikingly discovery that upon a muscle injury, Wnt7a is upregulated and secreted from new regenerating myofibers on the surface of exosomes to elicit its myogenerative response distally. Despite recent advances in extracellular vesicle (EVs) isolation from diverse tissues, there is still a lack of specific methodology to purify EVs from muscle tissue. To eliminate contamination with non-EV secreted proteins and cytoplasmic fragments, which are typically found when using classical methodology, such as ultracentrifugation, we adapted a protocol combining Tangential Flow Filtration (TFF) and Size Exclusion Chromatography (SEC). We found that this approach allows simultaneous purification of Wnt7a, bound to EVs (retentate fraction) and free non-EV Wnt7a (permeate fraction). Here we described this optimized protocol designed to specifically isolate EVs from hind limb muscle explants, without cross-contamination with other sources of non-EV bounded proteins. The first step of the protocol is to remove large EVs with sequential centrifugation. Extracellular vesicles are then concentrated and washed in exchange buffer by TFF. Lastly, SEC is performed to remove any soluble protein traces remaining after TFF. Overall, this procedure can be used to isolate EVs from conditioned media or biofluid that contains EVs derived from any cell type or tissue, improving reproducibility, efficiency, and purity of EVs preparations. Our purification protocol results in high purity EVs that maintain structural integrity and thus fully compatible with in vitro and in vivo bioactivity and analytic assays.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"14 1","pages":"22"},"PeriodicalIF":5.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468478/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Skeletal MusclePub Date : 2024-10-01DOI: 10.1186/s13395-024-00353-3
Javier Poyatos-García, Patricia Soblechero-Martín, Alessandro Liquori, Andrea López-Martínez, Pilar Maestre, Elisa González-Romero, Rafael P Vázquez-Manrique, Nuria Muelas, Gema García-García, Jessica Ohana, Virginia Arechavala-Gomeza, Juan J Vílchez
{"title":"Deletion of exons 45 to 55 in the DMD gene: from the therapeutic perspective to the in vitro model.","authors":"Javier Poyatos-García, Patricia Soblechero-Martín, Alessandro Liquori, Andrea López-Martínez, Pilar Maestre, Elisa González-Romero, Rafael P Vázquez-Manrique, Nuria Muelas, Gema García-García, Jessica Ohana, Virginia Arechavala-Gomeza, Juan J Vílchez","doi":"10.1186/s13395-024-00353-3","DOIUrl":"10.1186/s13395-024-00353-3","url":null,"abstract":"<p><strong>Background: </strong>Gene editing therapies in development for correcting out-of-frame DMD mutations in Duchenne muscular dystrophy aim to replicate benign spontaneous deletions. Deletion of 45-55 DMD exons (del45-55) was described in asymptomatic subjects, but recently serious skeletal and cardiac complications have been reported. Uncovering why a single mutation like del45-55 is able to induce diverse phenotypes and grades of severity may impact the strategies of emerging therapies. Cellular models are essential for this purpose, but their availability is compromised by scarce muscle biopsies.</p><p><strong>Methods: </strong>We introduced, as a proof-of-concept, using CRISPR-Cas9 edition, a del45-55 mimicking the intronic breakpoints harboured by a subset of patients of this form of dystrophinopathy (designing specific gRNAs), into a Duchenne patient's cell line. The edited cell line was characterized evaluating the dystrophin expression and the myogenic status.</p><p><strong>Results: </strong>Dystrophin expression was restored, and the myogenic defects were ameliorated in the edited myoblasts harbouring a specific del45-55. Besides confirming the potential of CRISPR-Cas9 to create tailored mutations (despite the low cleavage efficiency of our gRNAs) as a useful approach to generate in vitro models, we also generated an immortalized myoblast line derived from a patient with a specific del45-55.</p><p><strong>Conclusions: </strong>Overall, we provide helpful resources to deepen into unknown factors responsible for DMD-pathophysiology.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"14 1","pages":"21"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443720/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Skeletal MusclePub Date : 2024-08-20DOI: 10.1186/s13395-024-00352-4
Maria Chechenova, Lilla McLendon, Bracey Dallas, Hannah Stratton, Kaveh Kiani, Erik Gerberich, Alesia Alekseyenko, Natasya Tamba, SooBin An, Lizzet Castillo, Emily Czajkowski, Christina Talley, Austin Brown, Anton L Bryantsev
{"title":"Muscle degeneration in aging Drosophila flies: the role of mechanical stress.","authors":"Maria Chechenova, Lilla McLendon, Bracey Dallas, Hannah Stratton, Kaveh Kiani, Erik Gerberich, Alesia Alekseyenko, Natasya Tamba, SooBin An, Lizzet Castillo, Emily Czajkowski, Christina Talley, Austin Brown, Anton L Bryantsev","doi":"10.1186/s13395-024-00352-4","DOIUrl":"10.1186/s13395-024-00352-4","url":null,"abstract":"<p><p>Muscle wasting is a universal hallmark of aging which is displayed by a wide range of organisms, although the causes and mechanisms of this phenomenon are not fully understood. We used Drosophila to characterize the phenomenon of spontaneous muscle fiber degeneration (SMFD) during aging. We found that SMFD occurs across diverse types of somatic muscles, progresses with chronological age, and positively correlates with functional muscle decline. Data from vital dyes and morphological markers imply that degenerative fibers most likely die by necrosis. Mechanistically, SMFD is driven by the damage resulting from muscle contractions, and the nervous system may play a significant role in this process. Our quantitative model of SMFD assessment can be useful in identifying and validating novel genetic factors that influence aging-related muscle wasting.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"14 1","pages":"20"},"PeriodicalIF":5.3,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334408/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Skeletal MusclePub Date : 2024-08-09DOI: 10.1186/s13395-024-00350-6
Erin M Lloyd, Rachael C Crew, Vanessa R Haynes, Robert B White, Peter J Mark, Connie Jackaman, John M Papadimitriou, Gavin J Pinniger, Robyn M Murphy, Matthew J Watt, Miranda D Grounds
{"title":"Pilot investigations into the mechanistic basis for adverse effects of glucocorticoids in dysferlinopathy.","authors":"Erin M Lloyd, Rachael C Crew, Vanessa R Haynes, Robert B White, Peter J Mark, Connie Jackaman, John M Papadimitriou, Gavin J Pinniger, Robyn M Murphy, Matthew J Watt, Miranda D Grounds","doi":"10.1186/s13395-024-00350-6","DOIUrl":"10.1186/s13395-024-00350-6","url":null,"abstract":"<p><strong>Background: </strong>Dysferlinopathies are a clinically heterogeneous group of muscular dystrophies caused by gene mutations resulting in deficiency of the membrane-associated protein dysferlin. They manifest post-growth and are characterised by muscle wasting (primarily in the limb and limb-gridle muscles), inflammation, and replacement of myofibres with adipose tissue. The precise pathomechanism for dysferlinopathy is currently unclear; as such there are no treatments currently available. Glucocorticoids (GCs) are widely used to reduce inflammation and treat muscular dystrophies, but when administered to patients with dysferlinopathy, they have unexpected adverse effects, with accelerated loss of muscle strength.</p><p><strong>Methods: </strong>To investigate the mechanistic basis for the adverse effects of GCs in dysferlinopathy, the potent GC dexamethasone (Dex) was administered for 4-5 weeks (0.5-0.75 µg/mL in drinking water) to dysferlin-deficient BLA/J and normal wild-type (WT) male mice, sampled at 5 (Study 1) or 10 months (Study 2) of age. A wide range of analyses were conducted. Metabolism- and immune-related gene expression was assessed in psoas muscles at both ages and in quadriceps at 10 months of age. For the 10-month-old mice, quadriceps and psoas muscle histology was assessed. Additionally, we investigated the impact of Dex on the predominantly slow and fast-twitch soleus and extensor digitorum longus (EDL) muscles (respectively) in terms of contractile function, myofibre-type composition, and levels of proteins related to contractile function and metabolism, plus glycogen.</p><p><strong>Results: </strong>At both ages, many complement-related genes were highly expressed in BLA/J muscles, and WT mice were generally more responsive to Dex than BLA/J. The effects of Dex on BLA/J mice included (i) increased expression of inflammasome-related genes in muscles (at 5 months) and (ii) exacerbated histopathology of quadriceps and psoas muscles at 10 months. A novel observation was pronounced staining for glycogen in many myofibres of the damaged quadriceps muscles, with large pale vacuolated myofibres, suggesting possible myofibre death by oncosis.</p><p><strong>Conclusion: </strong>These pilot studies provide a new focus for further investigation into the adverse effects of GCs on dysferlinopathic muscles.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"14 1","pages":"19"},"PeriodicalIF":5.3,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11312411/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141913890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Skeletal MusclePub Date : 2024-08-02DOI: 10.1186/s13395-024-00351-5
Avery Hinks, Geoffrey A Power
{"title":"Age-related differences in the loss and recovery of serial sarcomere number following disuse atrophy in rats.","authors":"Avery Hinks, Geoffrey A Power","doi":"10.1186/s13395-024-00351-5","DOIUrl":"10.1186/s13395-024-00351-5","url":null,"abstract":"<p><strong>Background: </strong>Older adults exhibit a slower recovery of muscle mass following disuse atrophy than young adults. At a smaller scale, muscle fibre cross-sectional area (i.e., sarcomeres in parallel) exhibits this same pattern. Less is known, however, about age-related differences in the recovery of muscle fibre length, driven by increases in serial sarcomere number (SSN), following disuse. The purpose of this study was to investigate age-related differences in SSN adaptations and muscle mechanical function during and following muscle immobilization. We hypothesized that older adult rats would experience a similar magnitude of SSN loss during immobilization, however, take longer to recover SSN than young following cast removal, which would limit the recovery of muscle mechanical function.</p><p><strong>Methods: </strong>We casted the plantar flexors of young (8 months) and old (32 months) male rats in a shortened position for 2 weeks, and assessed recovery during 4 weeks of voluntary ambulation. Following sacrifice, legs were fixed in formalin for measurement of soleus SSN and physiological cross-sectional area (PCSA) with the un-casted soleus acting as a control. Ultrasonographic measurements of pennation angle (PA) and muscle thickness (MT) were conducted weekly. In-vivo active and passive torque-angle relationships were constructed pre-cast, post-cast, and following 4 weeks of recovery.</p><p><strong>Results: </strong>From pre- to post-cast, young and older adult rats experienced similar decreases in SSN (-20%, P < 0.001), muscle wet weight (-25%, P < 0.001), MT (-30%), PA (-15%, P < 0.001), and maximum isometric torque (-40%, P < 0.001), but there was a greater increase in passive torque in older (+ 180%, P < 0.001) compared to young adult rats (+ 68%, P = 0.006). Following cast removal, young exhibited quicker recovery of SSN and MT than old, but SSN recovered sooner than PA and MT in both young and old. PCSA nearly recovered and active torque fully recovered in young adult rats, whereas in older adult rats these remained unrecovered at ∼ 75%.</p><p><strong>Conclusions: </strong>This study showed that older adult rats retain a better ability to recover longitudinal compared to parallel muscle morphology following cast removal, making SSN a highly adaptable target for improving muscle function in elderly populations early on during rehabilitation.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"14 1","pages":"18"},"PeriodicalIF":5.3,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295870/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}