{"title":"hnRNPK的悖论:缺乏和过量都会损害小鼠骨骼肌功能。","authors":"Yongjie Xu, Yuxi Wang, Xiaofang Cheng, Mengjia Zhang, Nuo Chen, Jiahua Guo, Yueru Huang, Quanxi Li, Tianyu Li, Tiantian Meng, Cencen Li, Pengpeng Zhang, Haixia Xu","doi":"10.1186/s13395-025-00393-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The RNA-binding protein hnRNPK is essential for animal growth and development, with a particular emphasis in myogenesis. Despite its importance, the precise mechanisms by which hnRNPK influences skeletal muscle physiology and development remain inadequately characterized.</p><p><strong>Methods: </strong>To explore its regulatory function, we developed a Myf5-cre-mediated myoblast precursor-specific knockout mouse model (Hnrnpk mKO), an Acta1-CreEsr1-mediated myofiber-specific inducible knockout mouse model (Hnrnpk aKO), and an AAV9-mediated skeletal muscle-specific overexpression mouse model (AAV9-hnRNPK). Morphological alterations in skeletal muscle were assessed using hematoxylin and eosin (HE) staining subsequent to hnRNPK knockout or overexpression. Global gene expression changes in the tibialis anterior (TA) muscle were assessed via RNA sequencing (RNA-seq). Furthermore, reverse transcription quantitative polymerase chain reaction (RT-qPCR), western blot analysis, immunofluorescence, immunohistochemistry, co-immunoprecipitation (Co-IP), dual luciferase analysis, and reactive oxygen species (ROS) detection were utilized to elucidate the molecular mechanisms by which hnRNPK contributes to skeletal muscle development.</p><p><strong>Results: </strong>Our findings indicate that the ablation of hnRNPK in myoblast precursors significantly impairs muscle development, disrupts fetal myogenesis, and results in embryonic lethality. In adult mice, both the loss and gain of hnRNPK function led to reduced muscle mass, decreased fiber size, and compromised skeletal muscle homeostasis. Importantly, the knockout of hnRNPK had a more substantial impact on skeletal muscle development compared to its overexpression, with myofiber-specific knockout leading to mortality within two weeks. Mechanistically, hnRNPK deficiency was associated with increased apoptosis and muscle atrophy, characterized by elevated expression of genes involved in apoptosis, muscle atrophy, and protein catabolism, along with impaired muscle contraction and extracellular matrix (ECM) organization. Conversely, hnRNPK overexpression was correlated with enhanced ferroptosis pathway and improved ECM organization, but was also associated with reduced oxidative phosphorylation and protein synthesis. The overexpression likely promotes ferroptosis via the hnRNPK/P53/Slc7a11/Gpx4 pathway, thereby accelerating muscle aging and reducing muscle mass.</p><p><strong>Conclusion: </strong>In conclusion, our findings underscore the critical importance of precise hnRNPK expression levels in maintaining skeletal muscle health. Both deficiency and overexpression of hnRNPK disrupt skeletal muscle development, highlighting its pivotal role in muscle physiology.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"15 1","pages":"20"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12329970/pdf/","citationCount":"0","resultStr":"{\"title\":\"The paradox of hnRNPK: both absence and excess impair skeletal muscle function in mice.\",\"authors\":\"Yongjie Xu, Yuxi Wang, Xiaofang Cheng, Mengjia Zhang, Nuo Chen, Jiahua Guo, Yueru Huang, Quanxi Li, Tianyu Li, Tiantian Meng, Cencen Li, Pengpeng Zhang, Haixia Xu\",\"doi\":\"10.1186/s13395-025-00393-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The RNA-binding protein hnRNPK is essential for animal growth and development, with a particular emphasis in myogenesis. Despite its importance, the precise mechanisms by which hnRNPK influences skeletal muscle physiology and development remain inadequately characterized.</p><p><strong>Methods: </strong>To explore its regulatory function, we developed a Myf5-cre-mediated myoblast precursor-specific knockout mouse model (Hnrnpk mKO), an Acta1-CreEsr1-mediated myofiber-specific inducible knockout mouse model (Hnrnpk aKO), and an AAV9-mediated skeletal muscle-specific overexpression mouse model (AAV9-hnRNPK). Morphological alterations in skeletal muscle were assessed using hematoxylin and eosin (HE) staining subsequent to hnRNPK knockout or overexpression. Global gene expression changes in the tibialis anterior (TA) muscle were assessed via RNA sequencing (RNA-seq). Furthermore, reverse transcription quantitative polymerase chain reaction (RT-qPCR), western blot analysis, immunofluorescence, immunohistochemistry, co-immunoprecipitation (Co-IP), dual luciferase analysis, and reactive oxygen species (ROS) detection were utilized to elucidate the molecular mechanisms by which hnRNPK contributes to skeletal muscle development.</p><p><strong>Results: </strong>Our findings indicate that the ablation of hnRNPK in myoblast precursors significantly impairs muscle development, disrupts fetal myogenesis, and results in embryonic lethality. In adult mice, both the loss and gain of hnRNPK function led to reduced muscle mass, decreased fiber size, and compromised skeletal muscle homeostasis. Importantly, the knockout of hnRNPK had a more substantial impact on skeletal muscle development compared to its overexpression, with myofiber-specific knockout leading to mortality within two weeks. Mechanistically, hnRNPK deficiency was associated with increased apoptosis and muscle atrophy, characterized by elevated expression of genes involved in apoptosis, muscle atrophy, and protein catabolism, along with impaired muscle contraction and extracellular matrix (ECM) organization. Conversely, hnRNPK overexpression was correlated with enhanced ferroptosis pathway and improved ECM organization, but was also associated with reduced oxidative phosphorylation and protein synthesis. The overexpression likely promotes ferroptosis via the hnRNPK/P53/Slc7a11/Gpx4 pathway, thereby accelerating muscle aging and reducing muscle mass.</p><p><strong>Conclusion: </strong>In conclusion, our findings underscore the critical importance of precise hnRNPK expression levels in maintaining skeletal muscle health. Both deficiency and overexpression of hnRNPK disrupt skeletal muscle development, highlighting its pivotal role in muscle physiology.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>\",\"PeriodicalId\":21747,\"journal\":{\"name\":\"Skeletal Muscle\",\"volume\":\"15 1\",\"pages\":\"20\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12329970/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Skeletal Muscle\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13395-025-00393-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Skeletal Muscle","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13395-025-00393-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The paradox of hnRNPK: both absence and excess impair skeletal muscle function in mice.
Background: The RNA-binding protein hnRNPK is essential for animal growth and development, with a particular emphasis in myogenesis. Despite its importance, the precise mechanisms by which hnRNPK influences skeletal muscle physiology and development remain inadequately characterized.
Methods: To explore its regulatory function, we developed a Myf5-cre-mediated myoblast precursor-specific knockout mouse model (Hnrnpk mKO), an Acta1-CreEsr1-mediated myofiber-specific inducible knockout mouse model (Hnrnpk aKO), and an AAV9-mediated skeletal muscle-specific overexpression mouse model (AAV9-hnRNPK). Morphological alterations in skeletal muscle were assessed using hematoxylin and eosin (HE) staining subsequent to hnRNPK knockout or overexpression. Global gene expression changes in the tibialis anterior (TA) muscle were assessed via RNA sequencing (RNA-seq). Furthermore, reverse transcription quantitative polymerase chain reaction (RT-qPCR), western blot analysis, immunofluorescence, immunohistochemistry, co-immunoprecipitation (Co-IP), dual luciferase analysis, and reactive oxygen species (ROS) detection were utilized to elucidate the molecular mechanisms by which hnRNPK contributes to skeletal muscle development.
Results: Our findings indicate that the ablation of hnRNPK in myoblast precursors significantly impairs muscle development, disrupts fetal myogenesis, and results in embryonic lethality. In adult mice, both the loss and gain of hnRNPK function led to reduced muscle mass, decreased fiber size, and compromised skeletal muscle homeostasis. Importantly, the knockout of hnRNPK had a more substantial impact on skeletal muscle development compared to its overexpression, with myofiber-specific knockout leading to mortality within two weeks. Mechanistically, hnRNPK deficiency was associated with increased apoptosis and muscle atrophy, characterized by elevated expression of genes involved in apoptosis, muscle atrophy, and protein catabolism, along with impaired muscle contraction and extracellular matrix (ECM) organization. Conversely, hnRNPK overexpression was correlated with enhanced ferroptosis pathway and improved ECM organization, but was also associated with reduced oxidative phosphorylation and protein synthesis. The overexpression likely promotes ferroptosis via the hnRNPK/P53/Slc7a11/Gpx4 pathway, thereby accelerating muscle aging and reducing muscle mass.
Conclusion: In conclusion, our findings underscore the critical importance of precise hnRNPK expression levels in maintaining skeletal muscle health. Both deficiency and overexpression of hnRNPK disrupt skeletal muscle development, highlighting its pivotal role in muscle physiology.
期刊介绍:
The only open access journal in its field, Skeletal Muscle publishes novel, cutting-edge research and technological advancements that investigate the molecular mechanisms underlying the biology of skeletal muscle. Reflecting the breadth of research in this area, the journal welcomes manuscripts about the development, metabolism, the regulation of mass and function, aging, degeneration, dystrophy and regeneration of skeletal muscle, with an emphasis on understanding adult skeletal muscle, its maintenance, and its interactions with non-muscle cell types and regulatory modulators.
Main areas of interest include:
-differentiation of skeletal muscle-
atrophy and hypertrophy of skeletal muscle-
aging of skeletal muscle-
regeneration and degeneration of skeletal muscle-
biology of satellite and satellite-like cells-
dystrophic degeneration of skeletal muscle-
energy and glucose homeostasis in skeletal muscle-
non-dystrophic genetic diseases of skeletal muscle, such as Spinal Muscular Atrophy and myopathies-
maintenance of neuromuscular junctions-
roles of ryanodine receptors and calcium signaling in skeletal muscle-
roles of nuclear receptors in skeletal muscle-
roles of GPCRs and GPCR signaling in skeletal muscle-
other relevant aspects of skeletal muscle biology.
In addition, articles on translational clinical studies that address molecular and cellular mechanisms of skeletal muscle will be published. Case reports are also encouraged for submission.
Skeletal Muscle reflects the breadth of research on skeletal muscle and bridges gaps between diverse areas of science for example cardiac cell biology and neurobiology, which share common features with respect to cell differentiation, excitatory membranes, cell-cell communication, and maintenance. Suitable articles are model and mechanism-driven, and apply statistical principles where appropriate; purely descriptive studies are of lesser interest.