{"title":"多个顺式调节模块确保在背肌识别规范中强健的tup/islet1功能。","authors":"Aurore Pelletier, Alexandre Carayon, Yannick Carrier, Coralie Sengenès, Laurence Dubois, Jean-Louis Frendo","doi":"10.1186/s13395-025-00392-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The development of functional muscles in Drosophila melanogaster relies on precise spatial and temporal transcriptional control, orchestrated by complex gene regulatory networks. Central to this regulation are cis-regulatory modules (CRMs), which integrate inputs from transcription factors to fine-tune gene expression during myogenesis. In this study, we investigate the transcriptional regulation of the LIM-homeodomain transcription factor Tup (Tailup/Islet-1), a key regulator of dorsal muscle development.</p><p><strong>Methods: </strong>Using a combination of CRISPR-Cas9-mediated deletion and transcriptional analyses, we examined the role of multiple CRMs in regulating tup expression.</p><p><strong>Results: </strong>We demonstrate that tup expression is controlled by multiple CRMs that function redundantly to maintain robust tup transcription in dorsal muscles. These mesodermal tup CRMs act sequentially and differentially during the development of dorsal muscles and other tissues, including heart cells and alary muscles. We show that activity of the two late-acting CRMs govern late-phase tup expression through positive autoregulation, whereas an early enhancer initiates transcription independently. Deletion of both late-acting CRMs results in muscle identity shifts and defective muscle patterning. Detailed morphological analyses reveal muscle misalignments at intersegmental borders.</p><p><strong>Conclusions: </strong>Our findings underscore the importance of CRM-mediated autoregulation and redundancy in ensuring robust and precise tup expression during muscle development. These results provide insights into how multiple CRMs coordinate gene regulation to ensure proper muscle identity and function.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"15 1","pages":"23"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12376424/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multiple cis-regulatory modules ensure robust tup/islet1 function in dorsal muscle identity specification.\",\"authors\":\"Aurore Pelletier, Alexandre Carayon, Yannick Carrier, Coralie Sengenès, Laurence Dubois, Jean-Louis Frendo\",\"doi\":\"10.1186/s13395-025-00392-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The development of functional muscles in Drosophila melanogaster relies on precise spatial and temporal transcriptional control, orchestrated by complex gene regulatory networks. Central to this regulation are cis-regulatory modules (CRMs), which integrate inputs from transcription factors to fine-tune gene expression during myogenesis. In this study, we investigate the transcriptional regulation of the LIM-homeodomain transcription factor Tup (Tailup/Islet-1), a key regulator of dorsal muscle development.</p><p><strong>Methods: </strong>Using a combination of CRISPR-Cas9-mediated deletion and transcriptional analyses, we examined the role of multiple CRMs in regulating tup expression.</p><p><strong>Results: </strong>We demonstrate that tup expression is controlled by multiple CRMs that function redundantly to maintain robust tup transcription in dorsal muscles. These mesodermal tup CRMs act sequentially and differentially during the development of dorsal muscles and other tissues, including heart cells and alary muscles. We show that activity of the two late-acting CRMs govern late-phase tup expression through positive autoregulation, whereas an early enhancer initiates transcription independently. Deletion of both late-acting CRMs results in muscle identity shifts and defective muscle patterning. Detailed morphological analyses reveal muscle misalignments at intersegmental borders.</p><p><strong>Conclusions: </strong>Our findings underscore the importance of CRM-mediated autoregulation and redundancy in ensuring robust and precise tup expression during muscle development. These results provide insights into how multiple CRMs coordinate gene regulation to ensure proper muscle identity and function.</p>\",\"PeriodicalId\":21747,\"journal\":{\"name\":\"Skeletal Muscle\",\"volume\":\"15 1\",\"pages\":\"23\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12376424/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Skeletal Muscle\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13395-025-00392-4\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Skeletal Muscle","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13395-025-00392-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Multiple cis-regulatory modules ensure robust tup/islet1 function in dorsal muscle identity specification.
Background: The development of functional muscles in Drosophila melanogaster relies on precise spatial and temporal transcriptional control, orchestrated by complex gene regulatory networks. Central to this regulation are cis-regulatory modules (CRMs), which integrate inputs from transcription factors to fine-tune gene expression during myogenesis. In this study, we investigate the transcriptional regulation of the LIM-homeodomain transcription factor Tup (Tailup/Islet-1), a key regulator of dorsal muscle development.
Methods: Using a combination of CRISPR-Cas9-mediated deletion and transcriptional analyses, we examined the role of multiple CRMs in regulating tup expression.
Results: We demonstrate that tup expression is controlled by multiple CRMs that function redundantly to maintain robust tup transcription in dorsal muscles. These mesodermal tup CRMs act sequentially and differentially during the development of dorsal muscles and other tissues, including heart cells and alary muscles. We show that activity of the two late-acting CRMs govern late-phase tup expression through positive autoregulation, whereas an early enhancer initiates transcription independently. Deletion of both late-acting CRMs results in muscle identity shifts and defective muscle patterning. Detailed morphological analyses reveal muscle misalignments at intersegmental borders.
Conclusions: Our findings underscore the importance of CRM-mediated autoregulation and redundancy in ensuring robust and precise tup expression during muscle development. These results provide insights into how multiple CRMs coordinate gene regulation to ensure proper muscle identity and function.
期刊介绍:
The only open access journal in its field, Skeletal Muscle publishes novel, cutting-edge research and technological advancements that investigate the molecular mechanisms underlying the biology of skeletal muscle. Reflecting the breadth of research in this area, the journal welcomes manuscripts about the development, metabolism, the regulation of mass and function, aging, degeneration, dystrophy and regeneration of skeletal muscle, with an emphasis on understanding adult skeletal muscle, its maintenance, and its interactions with non-muscle cell types and regulatory modulators.
Main areas of interest include:
-differentiation of skeletal muscle-
atrophy and hypertrophy of skeletal muscle-
aging of skeletal muscle-
regeneration and degeneration of skeletal muscle-
biology of satellite and satellite-like cells-
dystrophic degeneration of skeletal muscle-
energy and glucose homeostasis in skeletal muscle-
non-dystrophic genetic diseases of skeletal muscle, such as Spinal Muscular Atrophy and myopathies-
maintenance of neuromuscular junctions-
roles of ryanodine receptors and calcium signaling in skeletal muscle-
roles of nuclear receptors in skeletal muscle-
roles of GPCRs and GPCR signaling in skeletal muscle-
other relevant aspects of skeletal muscle biology.
In addition, articles on translational clinical studies that address molecular and cellular mechanisms of skeletal muscle will be published. Case reports are also encouraged for submission.
Skeletal Muscle reflects the breadth of research on skeletal muscle and bridges gaps between diverse areas of science for example cardiac cell biology and neurobiology, which share common features with respect to cell differentiation, excitatory membranes, cell-cell communication, and maintenance. Suitable articles are model and mechanism-driven, and apply statistical principles where appropriate; purely descriptive studies are of lesser interest.