Diana Castaño, Sidney Wang, Segovia Atencio-Garcia, Emily J. Shields, Maria C. Rico, Hannah Sharpe, Jacinta Bustamante, Allan Feng, Carole Le Coz, Neil Romberg, John W. Tobias, Paul J. Utz, Sarah E. Henrickson, Jean-Laurent Casanova, Roberto Bonasio, Michela Locci
{"title":"IL-12 drives the differentiation of human T follicular regulatory cells","authors":"Diana Castaño, Sidney Wang, Segovia Atencio-Garcia, Emily J. Shields, Maria C. Rico, Hannah Sharpe, Jacinta Bustamante, Allan Feng, Carole Le Coz, Neil Romberg, John W. Tobias, Paul J. Utz, Sarah E. Henrickson, Jean-Laurent Casanova, Roberto Bonasio, Michela Locci","doi":"10.1126/sciimmunol.adf2047","DOIUrl":"10.1126/sciimmunol.adf2047","url":null,"abstract":"<div >T follicular regulatory (T<sub>fr</sub>) cells can counteract the B cell helper activity of T follicular helper (T<sub>fh</sub>) cells and hinder the production of antibodies against self-antigens or allergens. A mechanistic understanding of the cytokines initiating the differentiation of human regulatory T (T<sub>reg</sub>) cells into T<sub>fr</sub> cells is still missing. Herein, we report that low doses of the pro-T<sub>fh</sub> cytokine interleukin-12 (IL-12) drive the induction of a T<sub>fr</sub> cell program on activated human T<sub>reg</sub> cells while also preserving their regulatory function. Mechanistically, we found that IL-12 led to STAT4 (signal transducer and activator of transcription 4) phosphorylation and binding to IL-12–driven follicular signature genes. Patients with inborn errors of immunity in the <i>IL12RB1</i> gene presented with a strong decrease in circulating T<sub>fr</sub> cells and produced higher levels of anti-actin autoantibodies in vivo. Overall, this study unveils IL-12 as an inducer of T<sub>fr</sub> cell differentiation in vivo and provides an approach for the in vitro generation of human T<sub>fr</sub>-like cells.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"9 97","pages":""},"PeriodicalIF":17.6,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141538517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Erin D. Lucas, Matthew A. Huggins, Changwei Peng, Christine O’Connor, Abigail R. Gress, Claire E. Thefaine, Emma M. Dehm, Yoshiaki Kubota, Stephen C. Jameson, Sara E. Hamilton
{"title":"Circulating KLRG1+ long-lived effector memory T cells retain the flexibility to become tissue resident","authors":"Erin D. Lucas, Matthew A. Huggins, Changwei Peng, Christine O’Connor, Abigail R. Gress, Claire E. Thefaine, Emma M. Dehm, Yoshiaki Kubota, Stephen C. Jameson, Sara E. Hamilton","doi":"10.1126/sciimmunol.adj8356","DOIUrl":"10.1126/sciimmunol.adj8356","url":null,"abstract":"<div >KLRG1<sup>+</sup> CD8 T cells persist for months after clearance of acute infections and maintain high levels of effector molecules, contributing protective immunity against systemic pathogens. Upon secondary infection, these long-lived effector cells (LLECs) are incapable of forming other circulating KLRG1<sup>−</sup> memory subsets such as central and effector memory T cells. Thus, KLRG1<sup>+</sup> memory T cells are frequently referred to as a terminally differentiated population that is relatively short lived. Here, we show that after viral infection of mice, effector cells derived from LLECs rapidly enter nonlymphoid tissues and reduce pathogen burden but are largely dependent on receiving antigen cues from vascular endothelial cells. Single-cell RNA sequencing reveals that secondary memory cells in nonlymphoid tissues arising from either KLRG1<sup>+</sup> or KLRG1<sup>−</sup> memory precursors develop a similar resident memory transcriptional signature. Thus, although LLECs cannot differentiate into other circulating memory populations, they still retain the flexibility to enter tissues and establish residency.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"9 96","pages":""},"PeriodicalIF":17.6,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141463027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miguel de Jesus, Alexander H. Settle, Daan Vorselen, Thomas K. Gaetjens, Michael Galiano, Yevgeniy Romin, Esther Lee, Yung Yu Wong, Tian-Ming Fu, Endi Santosa, Benjamin Y. Winer, Fella Tamzalit, Mitchell S. Wang, Anthony Santella, Zhirong Bao, Joseph C. Sun, Pavak Shah, Julie A. Theriot, Steven M. Abel, Morgan Huse
{"title":"Single-cell topographical profiling of the immune synapse reveals a biomechanical signature of cytotoxicity","authors":"Miguel de Jesus, Alexander H. Settle, Daan Vorselen, Thomas K. Gaetjens, Michael Galiano, Yevgeniy Romin, Esther Lee, Yung Yu Wong, Tian-Ming Fu, Endi Santosa, Benjamin Y. Winer, Fella Tamzalit, Mitchell S. Wang, Anthony Santella, Zhirong Bao, Joseph C. Sun, Pavak Shah, Julie A. Theriot, Steven M. Abel, Morgan Huse","doi":"10.1126/sciimmunol.adj2898","DOIUrl":"10.1126/sciimmunol.adj2898","url":null,"abstract":"<div >Immune cells have intensely physical lifestyles characterized by structural plasticity and force exertion. To investigate whether specific immune functions require stereotyped mechanical outputs, we used super-resolution traction force microscopy to compare the immune synapses formed by cytotoxic T cells with contacts formed by other T cell subsets and by macrophages. T cell synapses were globally compressive, which was fundamentally different from the pulling and pinching associated with macrophage phagocytosis. Spectral decomposition of force exertion patterns from each cell type linked cytotoxicity to compressive strength, local protrusiveness, and the induction of complex, asymmetric topography. These features were validated as cytotoxic drivers by genetic disruption of cytoskeletal regulators, live imaging of synaptic secretion, and in silico analysis of interfacial distortion. Synapse architecture and force exertion were sensitive to target stiffness and size, suggesting that the mechanical potentiation of killing is biophysically adaptive. We conclude that cellular cytotoxicity and, by implication, other effector responses are supported by specialized patterns of efferent force.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"9 96","pages":""},"PeriodicalIF":17.6,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141463010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jennifer A. Foltz, Jennifer Tran, Pamela Wong, Changxu Fan, Evelyn Schmidt, Bryan Fisk, Michelle Becker-Hapak, David A. Russler-Germain, Jeanette Johnson, Nancy D. Marin, Celia C. Cubitt, Patrick Pence, Joseph Rueve, Sushanth Pureti, Kimberly Hwang, Feng Gao, Alice Y. Zhou, Mark Foster, Timothy Schappe, Lynne Marsala, Melissa M. Berrien-Elliott, Amanda F. Cashen, Jeffrey J. Bednarski, Elana Fertig, Obi L. Griffith, Malachi Griffith, Ting Wang, Allegra A. Petti, Todd A. Fehniger
{"title":"Cytokines drive the formation of memory-like NK cell subsets via epigenetic rewiring and transcriptional regulation","authors":"Jennifer A. Foltz, Jennifer Tran, Pamela Wong, Changxu Fan, Evelyn Schmidt, Bryan Fisk, Michelle Becker-Hapak, David A. Russler-Germain, Jeanette Johnson, Nancy D. Marin, Celia C. Cubitt, Patrick Pence, Joseph Rueve, Sushanth Pureti, Kimberly Hwang, Feng Gao, Alice Y. Zhou, Mark Foster, Timothy Schappe, Lynne Marsala, Melissa M. Berrien-Elliott, Amanda F. Cashen, Jeffrey J. Bednarski, Elana Fertig, Obi L. Griffith, Malachi Griffith, Ting Wang, Allegra A. Petti, Todd A. Fehniger","doi":"10.1126/sciimmunol.adk4893","DOIUrl":"10.1126/sciimmunol.adk4893","url":null,"abstract":"<div >Activation of natural killer (NK) cells with the cytokines interleukin-12 (IL-12), IL-15, and IL-18 induces their differentiation into memory-like (ML) NK cells; however, the underlying epigenetic and transcriptional mechanisms are unclear. By combining ATAC-seq, CITE-seq, and functional analyses, we discovered that IL-12/15/18 activation results in two main human NK fates: reprogramming into enriched memory-like (eML) NK cells or priming into effector conventional NK (effcNK) cells. eML NK cells had distinct transcriptional and epigenetic profiles and enhanced function, whereas effcNK cells resembled cytokine-primed cNK cells. Two transcriptionally discrete subsets of eML NK cells were also identified, eML-1 and eML-2, primarily arising from CD56<sup>bright</sup> or CD56<sup>dim</sup> mature NK cell subsets, respectively. Furthermore, these eML subsets were evident weeks after transfer of IL-12/15/18–activated NK cells into patients with cancer. Our findings demonstrate that NK cell activation with IL-12/15/18 results in previously unappreciated diverse cellular fates and identifies new strategies to enhance NK therapies.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"9 96","pages":""},"PeriodicalIF":17.6,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141462903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sophie L. Gray-Gaillard, Sabrina M. Solis, Han M. Chen, Clarice Monteiro, Grace Ciabattoni, Marie I. Samanovic, Amber R. Cornelius, Tijaana Williams, Emilie Geesey, Miguel Rodriguez, Mila Brum Ortigoza, Ellie N. Ivanova, Sergei B. Koralov, Mark J. Mulligan, Ramin Sedaghat Herati
{"title":"SARS-CoV-2 inflammation durably imprints memory CD4 T cells","authors":"Sophie L. Gray-Gaillard, Sabrina M. Solis, Han M. Chen, Clarice Monteiro, Grace Ciabattoni, Marie I. Samanovic, Amber R. Cornelius, Tijaana Williams, Emilie Geesey, Miguel Rodriguez, Mila Brum Ortigoza, Ellie N. Ivanova, Sergei B. Koralov, Mark J. Mulligan, Ramin Sedaghat Herati","doi":"10.1126/sciimmunol.adj8526","DOIUrl":"10.1126/sciimmunol.adj8526","url":null,"abstract":"<div >Memory CD4 T cells are critical to human immunity, yet it is unclear whether viral inflammation during memory formation has long-term consequences. Here, we compared transcriptional and epigenetic landscapes of Spike (S)–specific memory CD4 T cells in 24 individuals whose first exposure to S was via SARS-CoV-2 infection or mRNA vaccination. Nearly 2 years after memory formation, S-specific CD4 T cells established by infection remained enriched for transcripts related to cytotoxicity and for interferon-stimulated genes, likely because of a chromatin accessibility landscape altered by inflammation. Moreover, S-specific CD4 T cells primed by infection had reduced proliferative capacity in vitro relative to vaccine-primed cells. Furthermore, the transcriptional state of S-specific memory CD4 T cells was minimally altered by booster immunization and/or breakthrough infection. Thus, infection-associated inflammation durably imprints CD4 T cell memory, which affects the function of these cells and may have consequences for long-term immunity.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"9 96","pages":""},"PeriodicalIF":17.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciimmunol.adj8526","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141437483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yara El Morr, Mariela Fürstenheim, Martin Mestdagh, Katarzyna Franciszkiewicz, Marion Salou, Claire Morvan, Thierry Dupré, Alexey Vorobev, Bakhos Jneid, Virginie Premel, Aurélie Darbois, Laetitia Perrin, Stanislas Mondot, Ludovic Colombeau, Hélène Bugaut, Anastasia du Halgouet, Sophie Richon, Emanuele Procopio, Mathieu Maurin, Catherine Philippe, Raphael Rodriguez, Olivier Lantz, François Legoux
{"title":"MAIT cells monitor intestinal dysbiosis and contribute to host protection during colitis","authors":"Yara El Morr, Mariela Fürstenheim, Martin Mestdagh, Katarzyna Franciszkiewicz, Marion Salou, Claire Morvan, Thierry Dupré, Alexey Vorobev, Bakhos Jneid, Virginie Premel, Aurélie Darbois, Laetitia Perrin, Stanislas Mondot, Ludovic Colombeau, Hélène Bugaut, Anastasia du Halgouet, Sophie Richon, Emanuele Procopio, Mathieu Maurin, Catherine Philippe, Raphael Rodriguez, Olivier Lantz, François Legoux","doi":"10.1126/sciimmunol.adi8954","DOIUrl":"10.1126/sciimmunol.adi8954","url":null,"abstract":"<div >Intestinal inflammation shifts microbiota composition and metabolism. How the host monitors and responds to such changes remains unclear. Here, we describe a protective mechanism by which mucosal-associated invariant T (MAIT) cells detect microbiota metabolites produced upon intestinal inflammation and promote tissue repair. At steady state, MAIT ligands derived from the riboflavin biosynthesis pathway were produced by aerotolerant bacteria residing in the colonic mucosa. Experimental colitis triggered luminal expansion of riboflavin-producing bacteria, leading to increased production of MAIT ligands. Modulation of intestinal oxygen levels suggested a role for oxygen in inducing MAIT ligand production. MAIT ligands produced in the colon rapidly crossed the intestinal barrier and activated MAIT cells, which expressed tissue-repair genes and produced barrier-promoting mediators during colitis. Mice lacking MAIT cells were more susceptible to colitis and colitis-driven colorectal cancer. Thus, MAIT cells are sensitive to a bacterial metabolic pathway indicative of intestinal inflammation.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"9 96","pages":""},"PeriodicalIF":17.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141437482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Waking the sleeping giant: Single-stranded DNA binds Schlafen 11 to initiate innate immune responses","authors":"Stephanie A. Ragland, Jonathan C. Kagan","doi":"10.1126/sciimmunol.adp4474","DOIUrl":"10.1126/sciimmunol.adp4474","url":null,"abstract":"<div >Single-stranded DNA containing CGT/A motifs binds to the helicase domain of Schlafen 11 (SLFN11) to initiate cell death and cytokine production via SLFN11 ribonuclease activity (see related Research Article by Zhang <i>et al.</i>).</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"9 96","pages":""},"PeriodicalIF":24.8,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141321588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leon U. B. Enk, Malte Hellmig, Kristoffer Riecken, Christoph Kilian, Paul Datlinger, Saskia L. Jauch-Speer, Tobias Neben, Zeba Sultana, Varshi Sivayoganathan, Alina Borchers, Hans-Joachim Paust, Yu Zhao, Nariaki Asada, Shuya Liu, Theodora Agalioti, Penelope Pelczar, Thorsten Wiech, Christoph Bock, Tobias B. Huber, Samuel Huber, Stefan Bonn, Nicola Gagliani, Boris Fehse, Ulf Panzer, Christian F. Krebs
{"title":"Targeting T cell plasticity in kidney and gut inflammation by pooled single-cell CRISPR screening","authors":"Leon U. B. Enk, Malte Hellmig, Kristoffer Riecken, Christoph Kilian, Paul Datlinger, Saskia L. Jauch-Speer, Tobias Neben, Zeba Sultana, Varshi Sivayoganathan, Alina Borchers, Hans-Joachim Paust, Yu Zhao, Nariaki Asada, Shuya Liu, Theodora Agalioti, Penelope Pelczar, Thorsten Wiech, Christoph Bock, Tobias B. Huber, Samuel Huber, Stefan Bonn, Nicola Gagliani, Boris Fehse, Ulf Panzer, Christian F. Krebs","doi":"10.1126/sciimmunol.add6774","DOIUrl":"10.1126/sciimmunol.add6774","url":null,"abstract":"<div >Pro-inflammatory CD4<sup>+</sup> T cells are major drivers of autoimmune diseases, yet therapies modulating T cell phenotypes to promote an anti-inflammatory state are lacking. Here, we identify T helper 17 (T<sub>H</sub>17) cell plasticity in the kidneys of patients with antineutrophil cytoplasmic antibody–associated glomerulonephritis on the basis of single-cell (sc) T cell receptor analysis and scRNA velocity. To uncover molecules driving T cell polarization and plasticity, we established an in vivo pooled scCRISPR droplet sequencing (iCROP-seq) screen and applied it to mouse models of glomerulonephritis and colitis. CRISPR-based gene targeting in T<sub>H</sub>17 cells could be ranked according to the resulting transcriptional perturbations, and polarization biases into T helper 1 (T<sub>H</sub>1) and regulatory T cells could be quantified. Furthermore, we show that iCROP-seq can facilitate the identification of therapeutic targets by efficient functional stratification of genes and pathways in a disease- and tissue-specific manner. These findings uncover T<sub>H</sub>17 to T<sub>H</sub>1 cell plasticity in the human kidney in the context of renal autoimmunity.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"9 96","pages":""},"PeriodicalIF":24.8,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141321587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elena Martinez-Terroba, Leah M. Plasek-Hegde, Ioannis Chiotakakos, Vincent Li, Fernando J. de Miguel, Camila Robles-Oteiza, Antariksh Tyagi, Katerina Politi, Jesse R. Zamudio, Nadya Dimitrova
{"title":"Overexpression of Malat1 drives metastasis through inflammatory reprogramming of the tumor microenvironment","authors":"Elena Martinez-Terroba, Leah M. Plasek-Hegde, Ioannis Chiotakakos, Vincent Li, Fernando J. de Miguel, Camila Robles-Oteiza, Antariksh Tyagi, Katerina Politi, Jesse R. Zamudio, Nadya Dimitrova","doi":"10.1126/sciimmunol.adh5462","DOIUrl":"10.1126/sciimmunol.adh5462","url":null,"abstract":"<div >Expression of the long noncoding RNA (lncRNA) metastasis–associated lung adenocarcinoma transcript 1 (<i>MALAT1</i>) correlates with tumor progression and metastasis in many tumor types. However, the impact and mechanism of action by which <i>MALAT1</i> promotes metastatic disease remain elusive. Here, we used CRISPR activation (CRISPRa) to overexpress <i>MALAT1/Malat1</i> in patient-derived lung adenocarcinoma (LUAD) cell lines and in the autochthonous K-ras/p53 LUAD mouse model. <i>Malat1</i> overexpression was sufficient to promote the progression of LUAD to metastatic disease in mice. Overexpression of <i>MALAT1/Malat1</i> enhanced cell mobility and promoted the recruitment of protumorigenic macrophages to the tumor microenvironment through paracrine secretion of CCL2/Ccl2. <i>Ccl2</i> up-regulation was the result of increased global chromatin accessibility upon <i>Malat1</i> overexpression. Macrophage depletion and Ccl2 blockade counteracted the effects of <i>Malat1</i> overexpression. These data demonstrate that a single lncRNA can drive LUAD metastasis through reprogramming of the tumor microenvironment.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"9 96","pages":""},"PeriodicalIF":24.8,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141321585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}