抑制血栓反应蛋白-1介导的炎症可延长造血健康期

IF 17.6 1区 医学 Q1 IMMUNOLOGY
Pradeep Ramalingam, Michael C. Gutkin, Michael G. Poulos, Agatha Winiarski, Arianna Smith, Cody Carter, Chelsea Doughty, Taylor Tillery, David Redmond, Ana G. Freire, Jason M. Butler
{"title":"抑制血栓反应蛋白-1介导的炎症可延长造血健康期","authors":"Pradeep Ramalingam,&nbsp;Michael C. Gutkin,&nbsp;Michael G. Poulos,&nbsp;Agatha Winiarski,&nbsp;Arianna Smith,&nbsp;Cody Carter,&nbsp;Chelsea Doughty,&nbsp;Taylor Tillery,&nbsp;David Redmond,&nbsp;Ana G. Freire,&nbsp;Jason M. Butler","doi":"10.1126/sciimmunol.ads1556","DOIUrl":null,"url":null,"abstract":"<div >Chronic low-grade inflammation observed in older adults, termed inflammaging, is a common feature underlying a multitude of aging-associated maladies including a decline in hematopoietic activity. However, whether suppression of inflammaging can preserve hematopoietic health span remains unclear, in part because of a lack of tools to measure inflammaging within hematopoietic stem cells (HSCs). Here, we identify thrombospondin-1 (Thbs1) as an essential regulator of inflammaging within HSCs. We describe a transcriptomics-based approach for measuring inflammaging within stem cells and demonstrate that deletion of <i>Thbs1</i> is sufficient to prevent HSC inflammaging. Our results demonstrate that suppression of HSC inflammaging prevents aging-associated defects in hematopoietic activity including loss of HSC self-renewal, myeloid-biased HSC differentiation, and anemia. Our findings indicate that suppression of HSC inflammaging may also prolong overall systemic health span.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"10 103","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciimmunol.ads1556","citationCount":"0","resultStr":"{\"title\":\"Suppression of thrombospondin-1–mediated inflammaging prolongs hematopoietic health span\",\"authors\":\"Pradeep Ramalingam,&nbsp;Michael C. Gutkin,&nbsp;Michael G. Poulos,&nbsp;Agatha Winiarski,&nbsp;Arianna Smith,&nbsp;Cody Carter,&nbsp;Chelsea Doughty,&nbsp;Taylor Tillery,&nbsp;David Redmond,&nbsp;Ana G. Freire,&nbsp;Jason M. Butler\",\"doi\":\"10.1126/sciimmunol.ads1556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Chronic low-grade inflammation observed in older adults, termed inflammaging, is a common feature underlying a multitude of aging-associated maladies including a decline in hematopoietic activity. However, whether suppression of inflammaging can preserve hematopoietic health span remains unclear, in part because of a lack of tools to measure inflammaging within hematopoietic stem cells (HSCs). Here, we identify thrombospondin-1 (Thbs1) as an essential regulator of inflammaging within HSCs. We describe a transcriptomics-based approach for measuring inflammaging within stem cells and demonstrate that deletion of <i>Thbs1</i> is sufficient to prevent HSC inflammaging. Our results demonstrate that suppression of HSC inflammaging prevents aging-associated defects in hematopoietic activity including loss of HSC self-renewal, myeloid-biased HSC differentiation, and anemia. Our findings indicate that suppression of HSC inflammaging may also prolong overall systemic health span.</div>\",\"PeriodicalId\":21734,\"journal\":{\"name\":\"Science Immunology\",\"volume\":\"10 103\",\"pages\":\"\"},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciimmunol.ads1556\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciimmunol.ads1556\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/sciimmunol.ads1556","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在老年人中观察到的慢性低度炎症,称为炎症,是许多衰老相关疾病的共同特征,包括造血活性下降。然而,抑制炎症是否可以保持造血健康仍不清楚,部分原因是缺乏测量造血干细胞(hsc)内炎症的工具。在这里,我们确定血栓反应蛋白-1 (Thbs1)是造血干细胞内炎症的重要调节因子。我们描述了一种基于转录组学的方法来测量干细胞内的炎症,并证明Thbs1的缺失足以防止HSC炎症。我们的研究结果表明,抑制HSC炎症可防止与衰老相关的造血活性缺陷,包括HSC自我更新丧失、骨髓偏向性HSC分化和贫血。我们的研究结果表明,抑制HSC炎症也可能延长整个系统的健康跨度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Suppression of thrombospondin-1–mediated inflammaging prolongs hematopoietic health span

Suppression of thrombospondin-1–mediated inflammaging prolongs hematopoietic health span
Chronic low-grade inflammation observed in older adults, termed inflammaging, is a common feature underlying a multitude of aging-associated maladies including a decline in hematopoietic activity. However, whether suppression of inflammaging can preserve hematopoietic health span remains unclear, in part because of a lack of tools to measure inflammaging within hematopoietic stem cells (HSCs). Here, we identify thrombospondin-1 (Thbs1) as an essential regulator of inflammaging within HSCs. We describe a transcriptomics-based approach for measuring inflammaging within stem cells and demonstrate that deletion of Thbs1 is sufficient to prevent HSC inflammaging. Our results demonstrate that suppression of HSC inflammaging prevents aging-associated defects in hematopoietic activity including loss of HSC self-renewal, myeloid-biased HSC differentiation, and anemia. Our findings indicate that suppression of HSC inflammaging may also prolong overall systemic health span.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Immunology
Science Immunology Immunology and Microbiology-Immunology
CiteScore
32.90
自引率
2.00%
发文量
183
期刊介绍: Science Immunology is a peer-reviewed journal that publishes original research articles in the field of immunology. The journal encourages the submission of research findings from all areas of immunology, including studies on innate and adaptive immunity, immune cell development and differentiation, immunogenomics, systems immunology, structural immunology, antigen presentation, immunometabolism, and mucosal immunology. Additionally, the journal covers research on immune contributions to health and disease, such as host defense, inflammation, cancer immunology, autoimmunity, allergy, transplantation, and immunodeficiency. Science Immunology maintains the same high-quality standard as other journals in the Science family and aims to facilitate understanding of the immune system by showcasing innovative advances in immunology research from all organisms and model systems, including humans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信