Pradeep Ramalingam, Michael C. Gutkin, Michael G. Poulos, Agatha Winiarski, Arianna Smith, Cody Carter, Chelsea Doughty, Taylor Tillery, David Redmond, Ana G. Freire, Jason M. Butler
{"title":"抑制血栓反应蛋白-1介导的炎症可延长造血健康期","authors":"Pradeep Ramalingam, Michael C. Gutkin, Michael G. Poulos, Agatha Winiarski, Arianna Smith, Cody Carter, Chelsea Doughty, Taylor Tillery, David Redmond, Ana G. Freire, Jason M. Butler","doi":"10.1126/sciimmunol.ads1556","DOIUrl":null,"url":null,"abstract":"<div >Chronic low-grade inflammation observed in older adults, termed inflammaging, is a common feature underlying a multitude of aging-associated maladies including a decline in hematopoietic activity. However, whether suppression of inflammaging can preserve hematopoietic health span remains unclear, in part because of a lack of tools to measure inflammaging within hematopoietic stem cells (HSCs). Here, we identify thrombospondin-1 (Thbs1) as an essential regulator of inflammaging within HSCs. We describe a transcriptomics-based approach for measuring inflammaging within stem cells and demonstrate that deletion of <i>Thbs1</i> is sufficient to prevent HSC inflammaging. Our results demonstrate that suppression of HSC inflammaging prevents aging-associated defects in hematopoietic activity including loss of HSC self-renewal, myeloid-biased HSC differentiation, and anemia. Our findings indicate that suppression of HSC inflammaging may also prolong overall systemic health span.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"10 103","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciimmunol.ads1556","citationCount":"0","resultStr":"{\"title\":\"Suppression of thrombospondin-1–mediated inflammaging prolongs hematopoietic health span\",\"authors\":\"Pradeep Ramalingam, Michael C. Gutkin, Michael G. Poulos, Agatha Winiarski, Arianna Smith, Cody Carter, Chelsea Doughty, Taylor Tillery, David Redmond, Ana G. Freire, Jason M. Butler\",\"doi\":\"10.1126/sciimmunol.ads1556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Chronic low-grade inflammation observed in older adults, termed inflammaging, is a common feature underlying a multitude of aging-associated maladies including a decline in hematopoietic activity. However, whether suppression of inflammaging can preserve hematopoietic health span remains unclear, in part because of a lack of tools to measure inflammaging within hematopoietic stem cells (HSCs). Here, we identify thrombospondin-1 (Thbs1) as an essential regulator of inflammaging within HSCs. We describe a transcriptomics-based approach for measuring inflammaging within stem cells and demonstrate that deletion of <i>Thbs1</i> is sufficient to prevent HSC inflammaging. Our results demonstrate that suppression of HSC inflammaging prevents aging-associated defects in hematopoietic activity including loss of HSC self-renewal, myeloid-biased HSC differentiation, and anemia. Our findings indicate that suppression of HSC inflammaging may also prolong overall systemic health span.</div>\",\"PeriodicalId\":21734,\"journal\":{\"name\":\"Science Immunology\",\"volume\":\"10 103\",\"pages\":\"\"},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciimmunol.ads1556\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciimmunol.ads1556\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/sciimmunol.ads1556","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Suppression of thrombospondin-1–mediated inflammaging prolongs hematopoietic health span
Chronic low-grade inflammation observed in older adults, termed inflammaging, is a common feature underlying a multitude of aging-associated maladies including a decline in hematopoietic activity. However, whether suppression of inflammaging can preserve hematopoietic health span remains unclear, in part because of a lack of tools to measure inflammaging within hematopoietic stem cells (HSCs). Here, we identify thrombospondin-1 (Thbs1) as an essential regulator of inflammaging within HSCs. We describe a transcriptomics-based approach for measuring inflammaging within stem cells and demonstrate that deletion of Thbs1 is sufficient to prevent HSC inflammaging. Our results demonstrate that suppression of HSC inflammaging prevents aging-associated defects in hematopoietic activity including loss of HSC self-renewal, myeloid-biased HSC differentiation, and anemia. Our findings indicate that suppression of HSC inflammaging may also prolong overall systemic health span.
期刊介绍:
Science Immunology is a peer-reviewed journal that publishes original research articles in the field of immunology. The journal encourages the submission of research findings from all areas of immunology, including studies on innate and adaptive immunity, immune cell development and differentiation, immunogenomics, systems immunology, structural immunology, antigen presentation, immunometabolism, and mucosal immunology. Additionally, the journal covers research on immune contributions to health and disease, such as host defense, inflammation, cancer immunology, autoimmunity, allergy, transplantation, and immunodeficiency. Science Immunology maintains the same high-quality standard as other journals in the Science family and aims to facilitate understanding of the immune system by showcasing innovative advances in immunology research from all organisms and model systems, including humans.