Garett Dunsmore, Wei Guo, Ziyi Li, David Alejandro Bejarano, Rhea Pai, Katharine Yang, Immanuel Kwok, Leonard Tan, Melissa Ng, Carlos De La Calle Fabregat, Aline Yatim, Antoine Bougouin, Kevin Mulder, Jake Thomas, Javiera Villar, Mathilde Bied, Benoit Kloeckner, Charles-Antoine Dutertre, Grégoire Gessain, Svetoslav Chakarov, Zhaoyuan Liu, Jean-Yves Scoazec, Ana-Maria Lennon-Dumenil, Thomas Marichal, Catherine Sautès-Fridman, Wolf Herman Fridman, Ankur Sharma, Bing Su, Andreas Schlitzer, Lai Guan Ng, Camille Blériot, Florent Ginhoux
{"title":"Timing and location dictate monocyte fate and their transition to tumor-associated macrophages","authors":"Garett Dunsmore, Wei Guo, Ziyi Li, David Alejandro Bejarano, Rhea Pai, Katharine Yang, Immanuel Kwok, Leonard Tan, Melissa Ng, Carlos De La Calle Fabregat, Aline Yatim, Antoine Bougouin, Kevin Mulder, Jake Thomas, Javiera Villar, Mathilde Bied, Benoit Kloeckner, Charles-Antoine Dutertre, Grégoire Gessain, Svetoslav Chakarov, Zhaoyuan Liu, Jean-Yves Scoazec, Ana-Maria Lennon-Dumenil, Thomas Marichal, Catherine Sautès-Fridman, Wolf Herman Fridman, Ankur Sharma, Bing Su, Andreas Schlitzer, Lai Guan Ng, Camille Blériot, Florent Ginhoux","doi":"10.1126/sciimmunol.adk3981","DOIUrl":"10.1126/sciimmunol.adk3981","url":null,"abstract":"<div >Tumor-associated macrophages (TAMs) are a heterogeneous population of cells whose phenotypes and functions are shaped by factors that are incompletely understood. Herein, we asked when and where TAMs arise from blood monocytes and how they evolve during tumor development. We initiated pancreatic ductal adenocarcinoma (PDAC) in inducible monocyte fate-mapping mice and combined single-cell transcriptomics and high-dimensional flow cytometry to profile the monocyte-to-TAM transition. We revealed that monocytes differentiate first into a transient intermediate population of TAMs that generates two longer-lived lineages of terminally differentiated TAMs with distinct gene expression profiles, phenotypes, and intratumoral localization. Transcriptome datasets and tumor samples from patients with PDAC evidenced parallel TAM populations in humans and their prognostic associations. These insights will support the design of new therapeutic strategies targeting TAMs in PDAC.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"9 97","pages":""},"PeriodicalIF":17.6,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141767307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruchi P. Patel, Guido Ghilardi, Yunlin Zhang, Yi-Hao Chiang, Wei Xie, Puneeth Guruprasad, Ki Hyun Kim, Inkook Chun, Mathew G. Angelos, Raymone Pajarillo, Seok Jae Hong, Yong Gu Lee, Olga Shestova, Carolyn Shaw, Ivan Cohen, Aasha Gupta, Trang Vu, Dean Qian, Steven Yang, Aditya Nimmagadda, Adam E. Snook, Nicholas Siciliano, Antonia Rotolo, Arati Inamdar, Jaryse Harris, Ositadimma Ugwuanyi, Michael Wang, Alberto Carturan, Luca Paruzzo, Linhui Chen, Hatcher J. Ballard, Tatiana Blanchard, Chong Xu, Mohamed Abdel-Mohsen, Khatuna Gabunia, Maria Wysocka, Gerald P. Linette, Beatriz Carreno, David M. Barrett, David T. Teachey, Avery D. Posey, Daniel J. Powell Jr., C. Tor Sauter, Stefano Pileri, Vinodh Pillai, John Scholler, Alain H. Rook, Stephen J. Schuster, Stefan K. Barta, Patrizia Porazzi, Marco Ruella
{"title":"CD5 deletion enhances the antitumor activity of adoptive T cell therapies","authors":"Ruchi P. Patel, Guido Ghilardi, Yunlin Zhang, Yi-Hao Chiang, Wei Xie, Puneeth Guruprasad, Ki Hyun Kim, Inkook Chun, Mathew G. Angelos, Raymone Pajarillo, Seok Jae Hong, Yong Gu Lee, Olga Shestova, Carolyn Shaw, Ivan Cohen, Aasha Gupta, Trang Vu, Dean Qian, Steven Yang, Aditya Nimmagadda, Adam E. Snook, Nicholas Siciliano, Antonia Rotolo, Arati Inamdar, Jaryse Harris, Ositadimma Ugwuanyi, Michael Wang, Alberto Carturan, Luca Paruzzo, Linhui Chen, Hatcher J. Ballard, Tatiana Blanchard, Chong Xu, Mohamed Abdel-Mohsen, Khatuna Gabunia, Maria Wysocka, Gerald P. Linette, Beatriz Carreno, David M. Barrett, David T. Teachey, Avery D. Posey, Daniel J. Powell Jr., C. Tor Sauter, Stefano Pileri, Vinodh Pillai, John Scholler, Alain H. Rook, Stephen J. Schuster, Stefan K. Barta, Patrizia Porazzi, Marco Ruella","doi":"10.1126/sciimmunol.adn6509","DOIUrl":"10.1126/sciimmunol.adn6509","url":null,"abstract":"<div >Most patients treated with US Food and Drug Administration (FDA)–approved chimeric antigen receptor (CAR) T cells eventually experience disease progression. Furthermore, CAR T cells have not been curative against solid cancers and several hematological malignancies such as T cell lymphomas, which have very poor prognoses. One of the main barriers to the clinical success of adoptive T cell immunotherapies is CAR T cell dysfunction and lack of expansion and/or persistence after infusion. In this study, we found that CD5 inhibits CAR T cell activation and that knockout (KO) of CD5 using CRISPR-Cas9 enhances the antitumor effect of CAR T cells in multiple hematological and solid cancer models. Mechanistically, CD5 KO drives increased T cell effector function with enhanced cytotoxicity, in vivo expansion, and persistence, without apparent toxicity in preclinical models. These findings indicate that CD5 is a critical inhibitor of T cell function and a potential clinical target for enhancing T cell therapies.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"9 97","pages":""},"PeriodicalIF":17.6,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141727766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julie Stockis, Thomas Yip, Julia Moreno-Vicente, Oliver Burton, Youhani Samarakoon, Martijn J. Schuijs, Shwetha Raghunathan, Celine Garcia, Weike Luo, Sarah K. Whiteside, Shaun Png, Charlotte Simpson, Stela Monk, Ashley Sawle, Kelvin Yin, Johanna Barbieri, Panagiotis Papadopoulos, Hannah Wong, Hans-Reimer Rodewald, Timothy Vyse, Andrew N. J. McKenzie, Mark S. Cragg, Matthew Hoare, David R. Withers, Hans Jörg Fehling, Rahul Roychoudhuri, Adrian Liston, Timotheus Y. F. Halim
{"title":"Cross-talk between ILC2 and Gata3high Tregs locally constrains adaptive type 2 immunity","authors":"Julie Stockis, Thomas Yip, Julia Moreno-Vicente, Oliver Burton, Youhani Samarakoon, Martijn J. Schuijs, Shwetha Raghunathan, Celine Garcia, Weike Luo, Sarah K. Whiteside, Shaun Png, Charlotte Simpson, Stela Monk, Ashley Sawle, Kelvin Yin, Johanna Barbieri, Panagiotis Papadopoulos, Hannah Wong, Hans-Reimer Rodewald, Timothy Vyse, Andrew N. J. McKenzie, Mark S. Cragg, Matthew Hoare, David R. Withers, Hans Jörg Fehling, Rahul Roychoudhuri, Adrian Liston, Timotheus Y. F. Halim","doi":"10.1126/sciimmunol.adl1903","DOIUrl":"10.1126/sciimmunol.adl1903","url":null,"abstract":"<div >Regulatory T cells (T<sub>regs</sub>) control adaptive immunity and restrain type 2 inflammation in allergic disease. Interleukin-33 promotes the expansion of tissue-resident T<sub>regs</sub> and group 2 innate lymphoid cells (ILC2s); however, how T<sub>regs</sub> locally coordinate their function within the inflammatory niche is not understood. Here, we show that ILC2s are critical orchestrators of T<sub>reg</sub> function. Using spatial, cellular, and molecular profiling of the type 2 inflamed niche, we found that ILC2s and T<sub>regs</sub> engage in a direct (OX40L-OX40) and chemotaxis-dependent (CCL1-CCR8) cellular dialogue that enforces the local accumulation of Gata3<sup>high</sup> T<sub>regs</sub>, which are transcriptionally and functionally adapted to the type 2 environment. Genetic interruption of ILC2-T<sub>reg</sub> communication resulted in uncontrolled type 2 lung inflammation after allergen exposure. Mechanistically, we found that Gata3<sup>high</sup> T<sub>regs</sub> can modulate the local bioavailability of the costimulatory molecule OX40L, which subsequently controlled effector memory T helper 2 cell numbers. Hence, ILC2-T<sub>reg</sub> interactions represent a critical feedback mechanism to control adaptive type 2 immunity.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"9 97","pages":""},"PeriodicalIF":17.6,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141727767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander J. Brown, Janice White, Laura Shaw, Jimmy Gross, Andrei Slabodkin, Ella Kushner, Victor Greiff, Jennifer Matsuda, Laurent Gapin, James Scott-Browne, John Kappler, Philippa Marrack
{"title":"MHC heterozygosity limits T cell receptor variability in CD4 T cells","authors":"Alexander J. Brown, Janice White, Laura Shaw, Jimmy Gross, Andrei Slabodkin, Ella Kushner, Victor Greiff, Jennifer Matsuda, Laurent Gapin, James Scott-Browne, John Kappler, Philippa Marrack","doi":"10.1126/sciimmunol.ado5295","DOIUrl":"10.1126/sciimmunol.ado5295","url":null,"abstract":"<div >αβ T cell receptor (TCR) V(D)J genes code for billions of TCR combinations. However, only some appear on peripheral T cells in any individual because, to mature, thymocytes must react with low affinity but not high affinity with thymus expressed major histocompatibility (MHC)/peptides. MHC proteins are very polymorphic. Different alleles bind different peptides. Therefore, any individual might express many different MHC alleles to ensure that some peptides from an invader are bound to MHC and activate T cells. However, most individuals express limited numbers of MHC alleles. To explore this, we compared the TCR repertoires of naïve CD4 T cells in mice expressing one or two MHC alleles. Unexpectedly, the TCRs in heterozygotes were less diverse that those in the sum of their MHC homozygous relatives. Our results suggest that thymus negative selection cancels out the advantages of increased thymic positive selection in the MHC heterozygotes.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"9 97","pages":""},"PeriodicalIF":17.6,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141601727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuo Yang, Meijie Tian, Yulong Dai, Rong Wang, Shigehiro Yamada, Shengyong Feng, Yunyun Wang, Deepak Chhangani, Tiffany Ou, Wenle Li, Xuan Guo, Jennifer McAdow, Diego E. Rincon-Limas, Xin Yin, Wanbo Tai, Gong Cheng, Aaron Johnson
{"title":"Infection and chronic disease activate a systemic brain-muscle signaling axis","authors":"Shuo Yang, Meijie Tian, Yulong Dai, Rong Wang, Shigehiro Yamada, Shengyong Feng, Yunyun Wang, Deepak Chhangani, Tiffany Ou, Wenle Li, Xuan Guo, Jennifer McAdow, Diego E. Rincon-Limas, Xin Yin, Wanbo Tai, Gong Cheng, Aaron Johnson","doi":"10.1126/sciimmunol.adm7908","DOIUrl":"10.1126/sciimmunol.adm7908","url":null,"abstract":"<div >Infections and neurodegenerative diseases induce neuroinflammation, but affected individuals often show nonneural symptoms including muscle pain and muscle fatigue. The molecular pathways by which neuroinflammation causes pathologies outside the central nervous system (CNS) are poorly understood. We developed multiple models to investigate the impact of CNS stressors on motor function and found that <i>Escherichia coli</i> infections and SARS-CoV-2 protein expression caused reactive oxygen species (ROS) to accumulate in the brain. ROS induced expression of the cytokine Unpaired 3 (Upd3) in <i>Drosophila</i> and its ortholog, IL-6, in mice. CNS-derived Upd3/IL-6 activated the JAK-STAT pathway in skeletal muscle, which caused muscle mitochondrial dysfunction and impaired motor function. We observed similar phenotypes after expressing toxic amyloid-β (Aβ42) in the CNS. Infection and chronic disease therefore activate a systemic brain-muscle signaling axis in which CNS-derived cytokines bypass the connectome and directly regulate muscle physiology, highlighting IL-6 as a therapeutic target to treat disease-associated muscle dysfunction.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"9 97","pages":""},"PeriodicalIF":17.6,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141601725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kaixin Liang, Katherine C. Barnett, Martin Hsu, Wei-Chun Chou, Sachendra S. Bais, Kristina Riebe, Yuying Xie, Tuong Thien Nguyen, Thomas H. Oguin III, Kevin M. Vannella, Stephen M. Hewitt, Daniel S. Chertow, Maria Blasi, Gregory D. Sempowski, Amelia Karlsson, Beverly H. Koller, Deborah J. Lenschow, Scott H. Randell, Jenny P.-Y. Ting
{"title":"Initiator cell death event induced by SARS-CoV-2 in the human airway epithelium","authors":"Kaixin Liang, Katherine C. Barnett, Martin Hsu, Wei-Chun Chou, Sachendra S. Bais, Kristina Riebe, Yuying Xie, Tuong Thien Nguyen, Thomas H. Oguin III, Kevin M. Vannella, Stephen M. Hewitt, Daniel S. Chertow, Maria Blasi, Gregory D. Sempowski, Amelia Karlsson, Beverly H. Koller, Deborah J. Lenschow, Scott H. Randell, Jenny P.-Y. Ting","doi":"10.1126/sciimmunol.adn0178","DOIUrl":"10.1126/sciimmunol.adn0178","url":null,"abstract":"<div >Virus-induced cell death is a key contributor to COVID-19 pathology. Cell death induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is well studied in myeloid cells but less in its primary host cell type, angiotensin-converting enzyme 2 (ACE2)–expressing human airway epithelia (HAE). SARS-CoV-2 induces apoptosis, necroptosis, and pyroptosis in HAE organotypic cultures. Single-cell and limiting-dilution analysis revealed that necroptosis is the primary cell death event in infected cells, whereas uninfected bystanders undergo apoptosis, and pyroptosis occurs later during infection. Mechanistically, necroptosis is induced by viral Z-RNA binding to Z-DNA–binding protein 1 (ZBP1) in HAE and lung tissues from patients with COVID-19. The Delta (B.1.617.2) variant, which causes more severe disease than Omicron (B1.1.529) in humans, is associated with orders of magnitude–greater Z-RNA/ZBP1 interactions, necroptosis, and disease severity in animal models. Thus, Delta induces robust ZBP1-mediated necroptosis and more disease severity.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"9 97","pages":""},"PeriodicalIF":17.6,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciimmunol.adn0178","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141601726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A confusion of pathways: Discerning cell death mechanisms in SARS-CoV-2 infection","authors":"Lok-Yin Roy Wong, Stanley Perlman","doi":"10.1126/sciimmunol.adp8170","DOIUrl":"10.1126/sciimmunol.adp8170","url":null,"abstract":"<div >Upon SARS-CoV-2 infection, infected cells undergo necroptosis, whereas delayed apoptosis and pyroptosis occur in uninfected, bystander cells, thus providing a plausible explanation for the extensive injury among myriad uninfected cells.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"9 97","pages":""},"PeriodicalIF":17.6,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141601724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Human life within a narrow range: The lethal ups and downs of type I interferons","authors":"Yanick J. Crow, Jean-Laurent Casanova","doi":"10.1126/sciimmunol.adm8185","DOIUrl":"10.1126/sciimmunol.adm8185","url":null,"abstract":"<div >The past 20 years have seen the definition of human monogenic disorders and their autoimmune phenocopies underlying either defective or enhanced type I interferon (IFN) activity. These disorders delineate the impact of type I IFNs in natural conditions and demonstrate that only a narrow window of type I IFN activity is beneficial. Insufficient type I IFN predisposes humans to life-threatening viral diseases (albeit unexpectedly few) with a central role in immunity to respiratory and cerebral viral infection. Excessive type I IFN, perhaps counterintuitively, appears to underlie a greater number of autoinflammatory and/or autoimmune conditions known as type I interferonopathies, whose study has revealed multiple molecular programs involved in the induction of type I IFN signaling. These observations suggest that the manipulation of type I IFN activity to within a physiological range may be clinically relevant for the prevention and treatment of viral and inflammatory diseases.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"9 97","pages":""},"PeriodicalIF":17.6,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141538516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A CHip off the old block","authors":"Giusy Della Gatta, Asha Pillai","doi":"10.1126/sciimmunol.adr2965","DOIUrl":"10.1126/sciimmunol.adr2965","url":null,"abstract":"<div >Lineage-specific effects of upstream promoters affect ST2 expression and effector function in T<sub>H</sub>1 cells.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"9 97","pages":""},"PeriodicalIF":17.6,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141538513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emma L. Houlder, Koen A. Stam, Jan Pieter R. Koopman, Marion H. König, Marijke C. C. Langenberg, Marie-Astrid Hoogerwerf, Paula Niewold, Friederike Sonnet, Jacqueline J. Janse, Miriam Casacuberta Partal, Jeroen C. Sijtsma, Laura H. M. de Bes-Roeleveld, Yvonne C. M. Kruize, Maria Yazdanbakhsh, Meta Roestenberg
{"title":"Early symptom-associated inflammatory responses shift to type 2 responses in controlled human schistosome infection","authors":"Emma L. Houlder, Koen A. Stam, Jan Pieter R. Koopman, Marion H. König, Marijke C. C. Langenberg, Marie-Astrid Hoogerwerf, Paula Niewold, Friederike Sonnet, Jacqueline J. Janse, Miriam Casacuberta Partal, Jeroen C. Sijtsma, Laura H. M. de Bes-Roeleveld, Yvonne C. M. Kruize, Maria Yazdanbakhsh, Meta Roestenberg","doi":"10.1126/sciimmunol.adl1965","DOIUrl":"10.1126/sciimmunol.adl1965","url":null,"abstract":"<div >Schistosomiasis is an infection caused by contact with <i>Schistosoma</i>-contaminated water and affects more than 230 million people worldwide with varying morbidity. The roles of T helper 2 (T<sub>H</sub>2) cells and regulatory immune responses in chronic infection are well documented, but less is known about human immune responses during acute infection. Here, we comprehensively map immune responses during controlled human <i>Schistosoma mansoni</i> infection using male or female cercariae. Immune responses to male or female parasite single-sex infection were comparable. An early T<sub>H</sub>1-biased inflammatory response was observed at week 4 after infection, which was particularly apparent in individuals experiencing symptoms of acute schistosomiasis. By week 8 after infection, inflammatory responses were followed by an expansion of T<sub>H</sub>2 and regulatory cell subsets. This study demonstrates the shift from T<sub>H</sub>1 to both T<sub>H</sub>2 and regulatory responses, typical of chronic schistosomiasis, in the absence of egg production and provides immunological insight into the clinical manifestations of acute schistosomiasis.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"9 97","pages":""},"PeriodicalIF":17.6,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciimmunol.adl1965","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141538514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}