David P Jenkins, Guillermo Martinez, Kiran Salaunkey, S Ashwin Reddy, Joanna Pepke-Zaba
{"title":"Perioperative Management in Pulmonary Endarterectomy.","authors":"David P Jenkins, Guillermo Martinez, Kiran Salaunkey, S Ashwin Reddy, Joanna Pepke-Zaba","doi":"10.1055/s-0043-1770123","DOIUrl":"10.1055/s-0043-1770123","url":null,"abstract":"<p><p>Pulmonary endarterectomy (PEA) is the treatment of choice for patients with chronic thromboembolic pulmonary hypertension (PH), provided lesions are proximal enough in the pulmonary vasculature to be surgically accessible and the patient is well enough to benefit from the operation in the longer term. It is a major cardiothoracic operation, requiring specialized techniques and instruments developed over several decades to access and dissect out the intra-arterial fibrotic material. While in-hospital operative mortality is low (<5%), particularly in high-volume centers, careful perioperative management in the operating theater and intensive care is mandatory to balance ventricular performance, fluid balance, ventilation, and coagulation to avoid or treat complications. Reperfusion pulmonary edema, airway hemorrhage, and right ventricular failure are the most problematic complications, often requiring the use of extracorporeal membrane oxygenation to bridge to recovery. Successful PEA has been shown to improve both morbidity and mortality in large registries, with survival >70% at 10 years. For patients not suitable for PEA or with residual PH after PEA, balloon pulmonary angioplasty and/or PH medical therapy may prove beneficial. Here, we describe the indications for PEA, specific surgical and perioperative strategies, postoperative monitoring and management, and approaches for managing residual PH in the long term.</p>","PeriodicalId":21727,"journal":{"name":"Seminars in respiratory and critical care medicine","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9865723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laurent Savale, Mithum Kularatne, Anne Roche, Jérémie Pichon, Audrey Baron, Athenaïs Boucly, Olivier Sitbon, Marc Humbert
{"title":"Management of Acutely Decompensated Pulmonary Hypertension.","authors":"Laurent Savale, Mithum Kularatne, Anne Roche, Jérémie Pichon, Audrey Baron, Athenaïs Boucly, Olivier Sitbon, Marc Humbert","doi":"10.1055/s-0043-1770119","DOIUrl":"10.1055/s-0043-1770119","url":null,"abstract":"<p><p>Pulmonary arterial hypertension is a severe life-threatening condition associated with increased pulmonary vascular resistance and resulting right heart dysfunction. Admission to intensive care unit with acutely decompensated right heart failure is a significant negative prognostic event with a high risk of multisystem organ dysfunction and death. Presentations are heterogenous and may combine signs of both diastolic and systolic dysfunction complicating management. Renal dysfunction is often present, but other organ systems can be involved resulting in findings such as acute hepatic dysfunction or bowel wall congestion and ischemia. The goals of therapy are to rapidly reverse ventriculo-arterial decoupling and reduce right ventricular afterload to prevent progression to refractory or irreversible right heart failure. Triggering events must be investigated for and addressed urgently if identified. Volume status management is critical and both noninvasive and invasive testing can aid in prognostication and guide management, including the use of inotropes and vasopressors. In cases of refractory right heart dysfunction, consideration of urgent lung transplantation and mechanical circulatory support is necessary. These patients should be managed at expert centers in an intensive care setting with a multidisciplinary team of practitioners experienced in the management of right heart dysfunction given the high short- and long-term mortality resulting from acute decompensated right heart failure.</p>","PeriodicalId":21727,"journal":{"name":"Seminars in respiratory and critical care medicine","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9683795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jason Weatherald, Rhea A Varughese, Jonathan Liu, Marc Humbert
{"title":"Management of Pulmonary Arterial Hypertension.","authors":"Jason Weatherald, Rhea A Varughese, Jonathan Liu, Marc Humbert","doi":"10.1055/s-0043-1770118","DOIUrl":"10.1055/s-0043-1770118","url":null,"abstract":"<p><p>Pulmonary arterial hypertension (PAH) is a rare pulmonary vascular disease characterized by progressive pulmonary arterial remodeling, increased pulmonary vascular resistance, right ventricular dysfunction, and reduced survival. Effective therapies have been developed that target three pathobiologic pathways in PAH: nitric oxide, endothelin-1, and prostacyclin. Approved therapies for PAH include phosphodiesterase type-5 inhibitors, soluble guanylate cyclase stimulators, endothelin receptor antagonists, prostacyclin analogs, and prostacyclin receptor agonists. Management of PAH in the modern era incorporates multidimensional risk assessment to guide the use of these medications. For patients with PAH and without significant comorbidities, current guidelines recommend two oral medications (phosphodiesterase type-5 inhibitor and endothelin receptor antagonist) for low- and intermediate-risk patients, with triple therapy including a parenteral prostacyclin to be considered in those at high or intermediate-high risk. Combination therapy may be poorly tolerated and less effective in patients with PAH and cardiopulmonary comorbidities. Thus, a single-agent approach with individualized decisions to add-on other PAH therapies is recommended in older patients and those with significant comorbid conditions. Management of PAH is best performed in multidisciplinary teams located in experienced centers. Other core pillars of PAH management include supportive and adjunctive treatments including oxygen, diuretics, rehabilitation, and anticoagulation in certain patients. Patients with PAH who progress despite optimal treatment or who are refractory to best medical care should be referred for lung transplantation, if eligible. Despite considerable progress, PAH is often fatal and new therapies that reverse the disease and improve outcomes are desperately needed.</p>","PeriodicalId":21727,"journal":{"name":"Seminars in respiratory and critical care medicine","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9683794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"End-of-Life and Palliative Care Issues for Patients Living with Pulmonary Arterial Hypertension: Barriers and Opportunities.","authors":"Hyeon-Ju Ali, Sandeep Sahay","doi":"10.1055/s-0043-1770124","DOIUrl":"10.1055/s-0043-1770124","url":null,"abstract":"<p><p>Pulmonary arterial hypertension (PAH) is a progressive, incurable disease that results in significant symptom burden, health care utilization, and eventually premature death. Despite the advancements made in treatment and management strategies, survival has remained poor. End-of-life care is a challenging issue in management of PAH, especially when patients are in younger age group. End-of-life care revolves around symptom palliation and reducing psychosocial disease burden for a dying patient and entails advanced care planning that are often challenging. Thus, support from palliative care specialist becomes extremely important in these patients. Early introduction to palliative care in patients with high symptom burden and psychosocial suffering is suggested. Despite of the benefits of an early intervention, palliative care remains underutilized in patients with PAH, and this significantly raises issues around end-of-life care in PAH. In this review, we will discuss the opportunities offered and the existing barriers in addressing high symptom burden and end-of-life care issues. We will focus on the current evidence, identify areas for future research, and provide a call-to-action for better guidance to PAH specialists in making timely, appropriate interventions that can help mitigate end-of-life care issues.</p>","PeriodicalId":21727,"journal":{"name":"Seminars in respiratory and critical care medicine","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10185328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pulmonary Hypertension Associated with Left Heart Disease.","authors":"Claudia Baratto, Sergio Caravita, Jean-Luc Vachiéry","doi":"10.1055/s-0043-1772754","DOIUrl":"10.1055/s-0043-1772754","url":null,"abstract":"<p><p>Pulmonary hypertension (PH) is a common complication of diseases affecting the left heart, mostly found in patients suffering from heart failure, with or without preserved left ventricular ejection fraction. Initially driven by a passive increase in left atrial pressure (postcapillary PH), several mechanisms may lead in a subset of patient to significant structural changes of the pulmonary vessels or a precapillary component. In addition, the right ventricle may be independently affected, which results in right ventricular to pulmonary artery uncoupling and right ventricular failure, all being associated with a worse outcome. The differential diagnosis of PH associated with left heart disease versus pulmonary arterial hypertension (PAH) is especially challenging in patients with cardiovascular comorbidities and/or heart failure with preserved ejection fraction (HFpEF). A stepwise approach to diagnosis is proposed, starting with a proper clinical multidimensional phenotyping to identify patients in whom hemodynamic confirmation is deemed necessary. Provocative testing (exercise testing, fluid loading, or simple leg raising) is useful in the cath laboratory to identify patients with abnormal response who are more likely to suffer from HFpEF. In contrast with group 1 PH, management of PH associated with left heart disease must focus on the treatment of the underlying condition. Some PAH-approved targets have been unsuccessfully tried in clinical studies in a heterogeneous group of patients, some even leading to an increase in adverse events. There is currently no approved therapy for PH associated with left heart disease.</p>","PeriodicalId":21727,"journal":{"name":"Seminars in respiratory and critical care medicine","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10241202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pulmonary Function in Human Spaceflight.","authors":"Jan Stepanek, Rebecca S Blue, Desmond Connolly","doi":"10.1055/s-0043-1770064","DOIUrl":"10.1055/s-0043-1770064","url":null,"abstract":"<p><p>Human spaceflight is entering a time of markedly increased activity fueled by collaboration between governmental and private industry entities. This has resulted in successful mission planning for destinations in low Earth orbit, lunar destinations (Artemis program, Gateway station) as well as exploration to Mars. The planned construction of additional commercial space stations will ensure continued low Earth orbit presence and destinations for science but also commercial spaceflight participants. The human in the journey to space is exposed to numerous environmental challenges including increased gravitational forces, microgravity, altered human physiology during adaptation to weightlessness in space, altered ambient pressure, as well as other important stressors contingent on the type of mission and destination. This chapter will cover clinically important aspects relevant to lung function in a normally proceeding mission; emergency scenarios such as decompression, fire, etc., will not be covered as these are beyond the scope of this review. To date, participation in commercial spaceflight by those with pre-existing chronic medical conditions is very limited, and hence, close collaboration between practicing pulmonary specialists and aerospace medicine specialists is of critical importance to guarantee safety, proper clinical management, and hence success in these important endeavors.</p>","PeriodicalId":21727,"journal":{"name":"Seminars in respiratory and critical care medicine","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10185330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gas Exchange in the Lung.","authors":"Johan Petersson, Robb W Glenny","doi":"10.1055/s-0043-1770060","DOIUrl":"10.1055/s-0043-1770060","url":null,"abstract":"<p><p>Gas exchange in the lung depends on tidal breathing, which brings new oxygen to and removes carbon dioxide from alveolar gas. This maintains alveolar partial pressures that promote passive diffusion to add oxygen and remove carbon dioxide from blood in alveolar capillaries. In a lung model without ventilation and perfusion (V̇<sub>A</sub>Q̇) mismatch, alveolar partial pressures of oxygen and carbon dioxide are primarily determined by inspiratory pressures and alveolar ventilation. Regions with shunt or low ratios worsen arterial oxygenation while alveolar dead space and high lung units lessen CO<sub>2</sub> elimination efficiency. Although less common, diffusion limitation might cause hypoxemia in some situations. This review covers the principles of lung gas exchange and therefore mechanisms of hypoxemia or hypercapnia. In addition, we discuss different metrics that quantify the deviation from ideal gas exchange.</p>","PeriodicalId":21727,"journal":{"name":"Seminars in respiratory and critical care medicine","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41212163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David A Kaminsky, Kathryn A Hibbert, Andrew M Luks
{"title":"Review of Pulmonary Physiology.","authors":"David A Kaminsky, Kathryn A Hibbert, Andrew M Luks","doi":"10.1055/s-0043-1771162","DOIUrl":"10.1055/s-0043-1771162","url":null,"abstract":"","PeriodicalId":21727,"journal":{"name":"Seminars in respiratory and critical care medicine","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41212165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Pulmonary Vasculature.","authors":"Susan R Hopkins, Michael K Stickland","doi":"10.1055/s-0043-1770059","DOIUrl":"10.1055/s-0043-1770059","url":null,"abstract":"<p><p>The pulmonary circulation is a low-pressure, low-resistance circuit whose primary function is to deliver deoxygenated blood to, and oxygenated blood from, the pulmonary capillary bed enabling gas exchange. The distribution of pulmonary blood flow is regulated by several factors including effects of vascular branching structure, large-scale forces related to gravity, and finer scale factors related to local control. Hypoxic pulmonary vasoconstriction is one such important regulatory mechanism. In the face of local hypoxia, vascular smooth muscle constriction of precapillary arterioles increases local resistance by up to 250%. This has the effect of diverting blood toward better oxygenated regions of the lung and optimizing ventilation-perfusion matching. However, in the face of global hypoxia, the net effect is an increase in pulmonary arterial pressure and vascular resistance. Pulmonary vascular resistance describes the flow-resistive properties of the pulmonary circulation and arises from both precapillary and postcapillary resistances. The pulmonary circulation is also distensible in response to an increase in transmural pressure and this distention, in addition to recruitment, moderates pulmonary arterial pressure and vascular resistance. This article reviews the physiology of the pulmonary vasculature and briefly discusses how this physiology is altered by common circumstances.</p>","PeriodicalId":21727,"journal":{"name":"Seminars in respiratory and critical care medicine","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11192587/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41212166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pulmonary Physiology and Medicine of Diving.","authors":"Kay Tetzlaff","doi":"10.1055/s-0043-1770065","DOIUrl":"10.1055/s-0043-1770065","url":null,"abstract":"<p><p>Pulmonary physiology is significantly altered during underwater exposure, as immersion of the body and increased ambient pressure elicit profound effects on both the cardiovascular and respiratory systems. Thoracic blood pooling, increased breathing gas pressures, and variations in gas volumes alongside ambient pressure changes put the heart and lungs under stress. Normal physiologic function and fitness of the cardiovascular and respiratory systems are prerequisites to safely cope with the challenges of the underwater environment when freediving, or diving with underwater breathing apparatus. Few physicians are trained to understand the physiology and medicine of diving and how to recognize or manage diving injuries. This article provides an overview of the physiologic challenges to the respiratory system during diving, with or without breathing apparatus, and outlines possible health risks and hazards unique to the underwater environment. The underlying pathologic mechanisms of dive-related injuries are reviewed, with an emphasis on pulmonary physiology and pathophysiology.</p>","PeriodicalId":21727,"journal":{"name":"Seminars in respiratory and critical care medicine","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9690720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}