Chiagozie I Pickens, Catherine A Gao, Luisa Morales-Nebreda, Richard G Wunderink
{"title":"严重社区获得性肺炎的微生物学和快速分子技术的作用。","authors":"Chiagozie I Pickens, Catherine A Gao, Luisa Morales-Nebreda, Richard G Wunderink","doi":"10.1055/s-0043-1777770","DOIUrl":null,"url":null,"abstract":"<p><p>The microbiology of severe community acquired pneumonia (SCAP) has implications on management, clinical outcomes and public health policy. Therefore, knowledge of the etiologies of SCAP and methods to identify these microorganisms is key. Bacteria including Streptococcus pneumoniae, Staphylococcus aureus and Enterobacteriaceae continue to be important causes of SCAP. Viruses remain the most commonly identified etiology of SCAP. Atypical organisms are also important etiologies of SCAP and are critical to identify for public health. With the increased number of immunocompromised individuals, less common pathogens may also be found as the causative agent of SCAP. Traditional diagnostic tests, including semi-quantitative respiratory cultures, blood cultures and urinary antigens continue to hold an important role in the evaluation of patients with SCAP. Many of the limitations of the aforementioned tests are addressed by rapid, molecular diagnostic tests. Molecular diagnostics utilize culture-independent technology to identify species-specific genetic sequences. These tests are often semi-automated and provide results within hours, which provides an opportunity for expedient antibiotic stewardship. The existing literature suggests molecular diagnostic techniques may improve antibiotic stewardship in CAP, and future research should investigate optimal methods for implementation of these assays into clinical practice.</p>","PeriodicalId":21727,"journal":{"name":"Seminars in respiratory and critical care medicine","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbiology of Severe Community-Acquired Pneumonia and the Role of Rapid Molecular Techniques.\",\"authors\":\"Chiagozie I Pickens, Catherine A Gao, Luisa Morales-Nebreda, Richard G Wunderink\",\"doi\":\"10.1055/s-0043-1777770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The microbiology of severe community acquired pneumonia (SCAP) has implications on management, clinical outcomes and public health policy. Therefore, knowledge of the etiologies of SCAP and methods to identify these microorganisms is key. Bacteria including Streptococcus pneumoniae, Staphylococcus aureus and Enterobacteriaceae continue to be important causes of SCAP. Viruses remain the most commonly identified etiology of SCAP. Atypical organisms are also important etiologies of SCAP and are critical to identify for public health. With the increased number of immunocompromised individuals, less common pathogens may also be found as the causative agent of SCAP. Traditional diagnostic tests, including semi-quantitative respiratory cultures, blood cultures and urinary antigens continue to hold an important role in the evaluation of patients with SCAP. Many of the limitations of the aforementioned tests are addressed by rapid, molecular diagnostic tests. Molecular diagnostics utilize culture-independent technology to identify species-specific genetic sequences. These tests are often semi-automated and provide results within hours, which provides an opportunity for expedient antibiotic stewardship. The existing literature suggests molecular diagnostic techniques may improve antibiotic stewardship in CAP, and future research should investigate optimal methods for implementation of these assays into clinical practice.</p>\",\"PeriodicalId\":21727,\"journal\":{\"name\":\"Seminars in respiratory and critical care medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in respiratory and critical care medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/s-0043-1777770\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CRITICAL CARE MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in respiratory and critical care medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/s-0043-1777770","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
Microbiology of Severe Community-Acquired Pneumonia and the Role of Rapid Molecular Techniques.
The microbiology of severe community acquired pneumonia (SCAP) has implications on management, clinical outcomes and public health policy. Therefore, knowledge of the etiologies of SCAP and methods to identify these microorganisms is key. Bacteria including Streptococcus pneumoniae, Staphylococcus aureus and Enterobacteriaceae continue to be important causes of SCAP. Viruses remain the most commonly identified etiology of SCAP. Atypical organisms are also important etiologies of SCAP and are critical to identify for public health. With the increased number of immunocompromised individuals, less common pathogens may also be found as the causative agent of SCAP. Traditional diagnostic tests, including semi-quantitative respiratory cultures, blood cultures and urinary antigens continue to hold an important role in the evaluation of patients with SCAP. Many of the limitations of the aforementioned tests are addressed by rapid, molecular diagnostic tests. Molecular diagnostics utilize culture-independent technology to identify species-specific genetic sequences. These tests are often semi-automated and provide results within hours, which provides an opportunity for expedient antibiotic stewardship. The existing literature suggests molecular diagnostic techniques may improve antibiotic stewardship in CAP, and future research should investigate optimal methods for implementation of these assays into clinical practice.
期刊介绍:
The journal focuses on new diagnostic and therapeutic procedures, laboratory studies, genetic breakthroughs, pathology, clinical features and management as related to such areas as asthma and other lung diseases, critical care management, cystic fibrosis, lung and heart transplantation, pulmonary pathogens, and pleural disease as well as many other related disorders.The journal focuses on new diagnostic and therapeutic procedures, laboratory studies, genetic breakthroughs, pathology, clinical features and management as related to such areas as asthma and other lung diseases, critical care management, cystic fibrosis, lung and heart transplantation, pulmonary pathogens, and pleural disease as well as many other related disorders.