{"title":"Perancangan Aplikasi Pemesanan Makanan Berbasis Web","authors":"Darin Haerofifah","doi":"10.25134/nuansa.v16i1.4771","DOIUrl":"https://doi.org/10.25134/nuansa.v16i1.4771","url":null,"abstract":"","PeriodicalId":214195,"journal":{"name":"NUANSA INFORMATIKA","volume":"189 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122879054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhamad Rizki Nugroho, Iwansyah Edo Hendrawan, P. Purwantoro
{"title":"Penerapan Algoritma K-Means Untuk Klasterisasi Data Obat Pada Rumah Sakit ASRI","authors":"Muhamad Rizki Nugroho, Iwansyah Edo Hendrawan, P. Purwantoro","doi":"10.25134/nuansa.v16i1.5294","DOIUrl":"https://doi.org/10.25134/nuansa.v16i1.5294","url":null,"abstract":"Drug management is needed to manage drug stocks. Drugs need to be managed properly, effectively, and efficiently. Through good drug management, the drugs can be obtained quickly and accurately and reduce bad possibilities such as running out of drug stock in health services such as Puskesmas, Hospitals, and others. The results of an interview with one of the employees who manage drug data at the Asri Purwakarta Hospital shows that at the hospital often have drug shortages or excess even though the drug amounts are not too many. Grouping or clusterting is one of the best options that can be used in drug management system because this cluster system can classify the most frequently used drugs and it can become a reference or knowledge based in making decisions to manage the drugs. K-means algorithm is one of the algorithms in clustering that is used in this drug classification research. K-means algorithm is used in the research because of its simplicity and efficiency so it is easy to apply in all fields, especially drug data classification. The results of this study divided the drug data into 2 clusters, the first cluster with high usage there are 6 drugs and the second cluster with low usage with 933 drugs.","PeriodicalId":214195,"journal":{"name":"NUANSA INFORMATIKA","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129998126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sistem Informasi Inventaris Menggunakan Algoritma Haversine di Dinas Pemadam Kebakaran Kota Bekasi","authors":"Dani Yusuf, Asep Ramdhani Mahbub, Sugeng Supriyadi M.Kom","doi":"10.25134/nuansa.v16i1.5431","DOIUrl":"https://doi.org/10.25134/nuansa.v16i1.5431","url":null,"abstract":"","PeriodicalId":214195,"journal":{"name":"NUANSA INFORMATIKA","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123941692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Penerapan Agile Project Management Pada Pembuatan Sistem E-Warga Taman Cibodas Lippo Cikarang","authors":"Andre Elmustanizar","doi":"10.25134/nuansa.v16i1.4551","DOIUrl":"https://doi.org/10.25134/nuansa.v16i1.4551","url":null,"abstract":"The implementation of E-Government technology in government at this time has not been evenly applied in all regions, especially in the lowest government, namely RT (Rukun Tetangga). Currently administrative services in the RT001 RW017 area of Taman Cibodas Lippo Cikarang Housing are still using conventional method, by utilizing the E-Warga system technology, it is expected to change the conventional and more efficient way. By using the Agile Management System method and the Scrum model framework, the creation of this E-Warga system will be faster in the manufacturing process because it divides the project into several parts called sprints. The results of the research show that the creation of the E-Warga system takes 8 weeks by dividing the time into 5 sprints. The evaluation of the sprint results is carried out after completing 1 sprint which has been determined by the priority scale previously. With the presence of the E-Warga system, RT management and residents can be faster and more efficient in administrative activities in the area of RT001 RW017, Taman Cibodas Housing, Lippo Cikarang.","PeriodicalId":214195,"journal":{"name":"NUANSA INFORMATIKA","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128481036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"RANCANG BANGUN SISTEM INFORMASI TELLER MENGGUNAKAN JAVA NETBEANS","authors":"Fahmi Abdullah, Seniwarni Hulu","doi":"10.25134/nuansa.v16i1.4749","DOIUrl":"https://doi.org/10.25134/nuansa.v16i1.4749","url":null,"abstract":"Kajian ini bertujuan untuk membangun suatu aplikasi teller. Aplikasi ini dirancang sesuai dengan kebutuhan informasi yang semakin maju seiring dengan perkembangan teknologi computer sangat cepat, baik dari segi perangkat keras dan perangkat lunak. Sistem ini dirancang dengan menggunakan perangkat lunak Java dan Netbeans. Dengan demikian perancangan suatu sistem informasi memerlukan data dan informasi yang akurat agar sistem informasi yang dirancang dapat memenuhi kebutuhan sesuai yang diinginkan. Sistem meliput imodul-modul yang berkaitan dengan informasi tentang teller.Kata kunci : Sistem, Java, Neatbeans.","PeriodicalId":214195,"journal":{"name":"NUANSA INFORMATIKA","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130770483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analisis Prediksi Kebakaran Hutan dengan Menggunakan Algoritma Random Forest Classifier","authors":"Dede Husen, Dede - Sandi, Sepriadi - Bumbungan, Kusnawi - -, K. -","doi":"10.25134/nuansa.v16i1.5392","DOIUrl":"https://doi.org/10.25134/nuansa.v16i1.5392","url":null,"abstract":"Kebakaran hutan merupakan salah satu bencana yang sangat merugikan di dunia, tak terkecuali di Indonesia. Berdasarkan laporan dari Kementrian Lingkungan Hidup dan Kehutanan total kebakaran hutan dan lahan dalam rentang 2015 – 2019 yang terbakar adalah seluas 1.6 juta (Ha) [1]. Beberapa faktor yang mempengaruhi terjadinya kebakaran hutan diantaranya adalah faktor alam dan manusia. Faktor alam seperti kondisi suhu, kelembapan, kemarau, Elnino, erupsi gunung dan petir, kemudian para peneliti menemukan fakta bahwa aktivitas manusia di hutan seperti pembukaan lahan, eksploitasi kayu, perburuan dan pembakaran memiliki efek kausalitas terhadap terjadinya kebakaran hutan khususnya di daerah yang masih mempunyai hutan yang luas. Beberapa penelitian telah dilakukan untuk mencegah terjadinya kebakaran hutan seperti dengan menggunakan Teknik Data Mining dan Machine Learning yakni dengan melakukan prediksi kapan terjadinya kebakaran hutan berdasarkan kondisi cuaca dan histori laporan kebakaran namun masih belum sempurna. Maka dari itu pada penelitian ini kami mengembangkan konsep sistem prediksi kebakaran hutan yang akan menjadi salah satu acuan kebijakan pemerintah dalam mengeluarkan kebijakan yang bersifat preventif. Dengan melakukan pemodelan menggunakan model Algoritma Random Forest pada data kebakaran hutan dari tahun ketahun diwilayah Indonesia diharapakan dapat membantu pemerintah dalam melakukan pencegahan kebakaran hutan dengan kebijakan hukumnya dan analisis yang ada bisa digunakan oleh Balai Besar Teknologi Modifikasi Cuaca (BBTMC) yang dapat membantu menentukan kapan modifikasi cuaca dilakukan.","PeriodicalId":214195,"journal":{"name":"NUANSA INFORMATIKA","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125026898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IMPLEMENTASI TRANSFER LEARNING DALAM MENDETEKSI PENYAKIT PADA DAUN GANDUM","authors":"Faisal Mashuri","doi":"10.25134/nuansa.v16i1.4702","DOIUrl":"https://doi.org/10.25134/nuansa.v16i1.4702","url":null,"abstract":"Wheat is one of the most frequently consumed commodities of Indonesian people. This plant is often consumed as an carbohydrate addition or rice substitution. Most Indonesians process the wheat for ingredients such as flour, bread, instant noodles, cereals and other processed ingredients. Unfortunately, the demand for wheat is not suitable with level of production. One of the factors that hinder wheat production is crop failure due to disease or pests. Diseases that are often found in wheat are Septoria and Stripe Rust. The disease can be identified by color and leaf spot, but it is difficult to distinguish between the two diseases. With the rapid development of technology, this problem can be solved using one of the deep learning techniques known as transfer learning. The purpose of this study was to test five pretrained models to diagnose disease in wheat leaf, the models tested were InceptionV3, MobileNetV2, VGG16, ResNet101V2, DenseNet201. The results of testing and comparing five pretrained models, InceptionV3 gives better results than other models with a low computation time of only 976 seconds or the equivalent of 16 minutes and has a very high accuracy.","PeriodicalId":214195,"journal":{"name":"NUANSA INFORMATIKA","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125208142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PERANCANGAN DAN PEMBUATAN VIDEO ANIMASI DUA DIMENSI TENTANG PROTOKOL KESEHATAN DI HOTEL","authors":"Fahmi Abdullah, Ripilus Hulu","doi":"10.25134/nuansa.v16i1.4747","DOIUrl":"https://doi.org/10.25134/nuansa.v16i1.4747","url":null,"abstract":"pertumbuhan ekonomi adalah salah satu yang harus dipertahankan pada saat pandemi Covid-19 tetapi aktifitas ekonomi tidak bisa semuanya dilakukan secara berani dengan WFH, oleh karena itu di era digital ini melakukan sosialisasi menjadi lebih efektif dan efisien menggunakan media video interaktif berupa info grafis yang mudah dibagikan melalui media sosial berani, oleh sebab itu kami membuat info grafis video yang memuat pesan penerapan kebiasaan baru. Inilah yang melatar belakangi penulis untuk membuat protokol iklan kesehatan IDI dalam bentuk animasi dua dimensi sebagai salah satu upaya Kampanye untukmemberi tahukan kepada masyarakat luas pentingnya menjaga kesehatan di masa Pandemi covid-19. Sehinga iklan animasi dua dimensi ini dapat menjadi kemasan yang menarik dan bermanfaat bagi masyakat umum khususnya lingkungan perhotelan. Dalam aplikasinya dibuat dengan sederhana, dapat dipahami oleh penonton, menggunakan-efek video, suara dan animasi efek yang tidak berlebihan yang mencengangkan para penonton. Dengan sedikit narasi dan teks memudahkan penonton mencerna video kampanye ini. Kata kunci : Ekonomi, Covid-19, Animasi dua dimensi,","PeriodicalId":214195,"journal":{"name":"NUANSA INFORMATIKA","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128459637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Klasifikasi Opini Dengan Menggunakan Algoritma K-Nearest Neighbor Pada Berita Vaksinasi Di Twitter","authors":"Dede - Sandi","doi":"10.25134/nuansa.v16i1.5343","DOIUrl":"https://doi.org/10.25134/nuansa.v16i1.5343","url":null,"abstract":"Rapid technology development leads to heap of massive data. The big amount of the data should be utilized properly. The purpose of data utilization is to help users to get crucial information from the formed data patterns. The amount of crucial data can be obtained from social media i.e., twitter. Twitter is a social media that has approximately 50 million users in Indonesia. By having so many users in Indonesia, the twitter data can be utilized for many purposes. This research is interested to formed data from the twitter by using one of the algorithms which is K-Nearest Neighbor Classifier or KNN. The KNN work system is to calculate the closest distance from the test record to the test record using the test scenario method. The result of the KNN process is the shortest distance from the test record to the test record of K as needed. Keywords— twitter, data mining, classification, k-nearest neighbor classifier, euclidean distance.","PeriodicalId":214195,"journal":{"name":"NUANSA INFORMATIKA","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116445085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}