Dede - Sandi
{"title":"Klasifikasi Opini Dengan Menggunakan Algoritma K-Nearest Neighbor Pada Berita Vaksinasi Di Twitter","authors":"Dede - Sandi","doi":"10.25134/nuansa.v16i1.5343","DOIUrl":null,"url":null,"abstract":"Rapid technology development leads to heap of massive data. The big amount of the data should be utilized properly. The purpose of data utilization is to help users to get crucial information from the formed data patterns. The amount of crucial data can be obtained from social media i.e., twitter. Twitter is a social media that has approximately 50 million users in Indonesia. By having so many users in Indonesia, the twitter data can be utilized for many purposes. This research is interested to formed data from the twitter by using one of the algorithms which is K-Nearest Neighbor Classifier or KNN. The KNN work system is to calculate the closest distance from the test record to the test record using the test scenario method. The result of the KNN process is the shortest distance from the test record to the test record of K as needed. Keywords— twitter, data mining, classification, k-nearest neighbor classifier, euclidean distance.","PeriodicalId":214195,"journal":{"name":"NUANSA INFORMATIKA","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NUANSA INFORMATIKA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25134/nuansa.v16i1.5343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

技术的快速发展导致了海量数据的堆积。大量的数据应该得到合理的利用。数据利用的目的是帮助用户从形成的数据模式中获得关键信息。关键数据的数量可以从社交媒体,即twitter上获得。Twitter是一个社交媒体,在印度尼西亚拥有大约5000万用户。由于在印度尼西亚拥有如此多的用户,twitter数据可以用于许多目的。本研究的目的是利用k近邻分类器(KNN)算法从twitter中生成数据。KNN工作系统是使用测试场景法计算从测试记录到测试记录的最近距离。KNN过程的结果是根据需要从测试记录到K的测试记录的最短距离。关键词:twitter,数据挖掘,分类,k近邻分类器,欧氏距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Klasifikasi Opini Dengan Menggunakan Algoritma K-Nearest Neighbor Pada Berita Vaksinasi Di Twitter
Rapid technology development leads to heap of massive data. The big amount of the data should be utilized properly. The purpose of data utilization is to help users to get crucial information from the formed data patterns. The amount of crucial data can be obtained from social media i.e., twitter. Twitter is a social media that has approximately 50 million users in Indonesia. By having so many users in Indonesia, the twitter data can be utilized for many purposes. This research is interested to formed data from the twitter by using one of the algorithms which is K-Nearest Neighbor Classifier or KNN. The KNN work system is to calculate the closest distance from the test record to the test record using the test scenario method. The result of the KNN process is the shortest distance from the test record to the test record of K as needed. Keywords— twitter, data mining, classification, k-nearest neighbor classifier, euclidean distance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信