{"title":"An orthology-based methodology as a complementary approach to retrieve evolutionarily conserved A-to-I RNA editing sites.","authors":"Jiyao Liu,Tianyou Zhao,Caiqing Zheng,Ling Ma,Fan Song,Li Tian,Wanzhi Cai,Hu Li,Yuange Duan","doi":"10.1080/15476286.2024.2397757","DOIUrl":"https://doi.org/10.1080/15476286.2024.2397757","url":null,"abstract":"Adar-mediated adenosine-to-inosine (A-to-I) mRNA editing is a conserved mechanism that exerts diverse regulatory functions during the development, evolution, and adaptation of metazoans. The accurate detection of RNA editing sites helps us understand their biological significance. In this work, with an improved genome assembly of honeybee (Apis mellifera), we used a new orthology-based methodology to complement the traditional pipeline of (de novo) RNA editing detection. Compared to the outcome of traditional pipeline, we retrieved many novel editing sites in CDS that are deeply conserved between honeybee and other distantly related insects. The newly retrieved sites were missed by the traditional de novo identification due to the stringent criteria for controlling false-positive rate. Caste-specific editing sites are identified, including an Ile>Met auto-recoding site in Adar. This recoding was even conserved between honeybee and bumblebee, suggesting its putative regulatory role in shaping the phenotypic plasticity of eusocial Hymenoptera. In summary, we proposed a complementary approach to the traditional pipeline and retrieved several previously unnoticed CDS editing sites. From both technical and biological aspects, our works facilitate future researches on finding the functional editing sites and advance our understanding on the connection between RNA editing and the great phenotypic diversity of organisms.","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"22 1","pages":"29-45"},"PeriodicalIF":4.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNA BiologyPub Date : 2024-09-10DOI: 10.1080/15476286.2024.2395718
Andre Brezski,Justin Murtagh,Marcel H Schulz,Kathi Zarnack
{"title":"A systematic analysis of circRNAs in subnuclear compartments.","authors":"Andre Brezski,Justin Murtagh,Marcel H Schulz,Kathi Zarnack","doi":"10.1080/15476286.2024.2395718","DOIUrl":"https://doi.org/10.1080/15476286.2024.2395718","url":null,"abstract":"CircRNAs are an important class of RNAs with diverse cellular functions in human physiology and disease. A thorough knowledge of circRNAs including their biogenesis and subcellular distribution is important to understand their roles in a wide variety of processes. However, the analysis of circRNAs from total RNA sequencing data remains challenging. Therefore, we developed Calcifer, a versatile workflow for circRNA annotation. Using Calcifer, we analysed APEX-Seq data to compare circRNA occurrence between whole cells, nucleus and subnuclear compartments. We generally find that circRNAs show higher abundance in whole cells compared to nuclear samples, consistent with their accumulation in the cytoplasm. The notable exception is the single-exon circRNA circCANX(9), which is unexpectedly enriched in the nucleus. In addition, we observe that circFIRRE prevails over the linear lncRNA FIRRE in both the cytoplasm and the nucleus. Zooming in on the subnuclear compartments, we show that circRNAs are strongly depleted from nuclear speckles, indicating that excess splicing factors in this compartment counteract back-splicing. Our results thereby provide valuable insights into the subnuclear distribution of circRNAs. Regarding circRNA function, we surprisingly find that the majority of all detected circRNAs possess complete open reading frames with potential for cap-independent translation. Overall, we show that Calcifer is an easy-to-use, versatile and sustainable workflow for the annotation of circRNAs which expands the repertoire of circRNA tools and allows to gain new insights into circRNA distribution and function.","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"77 1","pages":"1-16"},"PeriodicalIF":4.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Silencing LINC00663 inhibits inflammation and angiogenesis through downregulation of NR2F1 via EBF1 in bladder cancer","authors":"Xiulong Zhong, Lijiang Sun, Junxiang Liu, Xiaokun Yang, Minghui Hou, Xinning Wang, Huifeng Diao","doi":"10.1080/15476286.2024.2368304","DOIUrl":"https://doi.org/10.1080/15476286.2024.2368304","url":null,"abstract":"This study is to elucidate the effect of the LINC00663/EBF1/NR2F1 axis on inflammation and angiogenesis in bladder cancer (BC) and related molecular mechanisms. After transfection, functional exper...","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"77 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141550256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNA BiologyPub Date : 2024-04-17DOI: 10.1080/15476286.2024.2340297
Josephine Davey-Young, Farah Hasan, Rasangi Tennakoon, Peter Rozik, Henry Moore, Peter Hall, Ecaterina Cozma, Julie Genereaux, Kyle S. Hoffman, Patricia P. Chan, Todd M. Lowe, Christopher J. Brandl, Patrick O’Donoghue
{"title":"Mistranslating the genetic code with leucine in yeast and mammalian cells","authors":"Josephine Davey-Young, Farah Hasan, Rasangi Tennakoon, Peter Rozik, Henry Moore, Peter Hall, Ecaterina Cozma, Julie Genereaux, Kyle S. Hoffman, Patricia P. Chan, Todd M. Lowe, Christopher J. Brandl, Patrick O’Donoghue","doi":"10.1080/15476286.2024.2340297","DOIUrl":"https://doi.org/10.1080/15476286.2024.2340297","url":null,"abstract":"Translation fidelity relies on accurate aminoacylation of transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases (AARSs). AARSs specific for alanine (Ala), leucine (Leu), serine, and pyrrolysine do no...","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"12 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140617406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNA BiologyPub Date : 2024-04-16DOI: 10.1080/15476286.2024.2342685
Étienne Fafard-Couture, Stéphane Labialle, Michelle S Scott
{"title":"The regulatory roles of small nucleolar RNAs within their host locus","authors":"Étienne Fafard-Couture, Stéphane Labialle, Michelle S Scott","doi":"10.1080/15476286.2024.2342685","DOIUrl":"https://doi.org/10.1080/15476286.2024.2342685","url":null,"abstract":"Small nucleolar RNAs (snoRNAs) are a class of conserved noncoding RNAs forming complexes with proteins to catalyse site-specific modifications on ribosomal RNA. Besides this canonical role, several...","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"4 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNA BiologyPub Date : 2024-04-02DOI: 10.1080/15476286.2024.2337493
Silvia D’Ambrosi, Raquel García-Vílchez, Darek Kedra, Patrice Vitali, Nuria Macias-Cámara, Laura Bárcena, Monika Gonzalez-Lopez, Ana M. Aransay, Sabine Dietmann, Antonio Hurtado, Sandra Blanco
{"title":"Global and single-nucleotide resolution detection of 7-methylguanosine in RNA","authors":"Silvia D’Ambrosi, Raquel García-Vílchez, Darek Kedra, Patrice Vitali, Nuria Macias-Cámara, Laura Bárcena, Monika Gonzalez-Lopez, Ana M. Aransay, Sabine Dietmann, Antonio Hurtado, Sandra Blanco","doi":"10.1080/15476286.2024.2337493","DOIUrl":"https://doi.org/10.1080/15476286.2024.2337493","url":null,"abstract":"RNA modifications, including N-7-methylguanosine (m7G), are pivotal in governing RNA stability and gene expression regulation. The accurate detection of internal m7G modifications is of paramount s...","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"202 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNA BiologyPub Date : 2024-02-01DOI: 10.1080/15476286.2024.2303555
Bharti Aggarwal, Wojciech Maciej Karlowski, Przemyslaw Nuc, Artur Jarmolowski, Zofia Szweykowska-Kulinska, Halina Pietrykowska
{"title":"MiRNAs differentially expressed in vegetative and reproductive organs of Marchantia polymorpha – insights into their expression pattern, gene structures and function","authors":"Bharti Aggarwal, Wojciech Maciej Karlowski, Przemyslaw Nuc, Artur Jarmolowski, Zofia Szweykowska-Kulinska, Halina Pietrykowska","doi":"10.1080/15476286.2024.2303555","DOIUrl":"https://doi.org/10.1080/15476286.2024.2303555","url":null,"abstract":"MicroRNAs regulate gene expression affecting a variety of plant developmental processes. The evolutionary position of Marchantia polymorpha makes it a significant model to understand miRNA-mediated...","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"28 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139664316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNA BiologyPub Date : 2024-01-01Epub Date: 2024-03-25DOI: 10.1080/15476286.2024.2329451
Anderson P Avila Santos, Breno L S de Almeida, Robson P Bonidia, Peter F Stadler, Polonca Stefanic, Ines Mandic-Mulec, Ulisses Rocha, Danilo S Sanches, André C P L F de Carvalho
{"title":"BioDeepfuse: a hybrid deep learning approach with integrated feature extraction techniques for enhanced non-coding RNA classification.","authors":"Anderson P Avila Santos, Breno L S de Almeida, Robson P Bonidia, Peter F Stadler, Polonca Stefanic, Ines Mandic-Mulec, Ulisses Rocha, Danilo S Sanches, André C P L F de Carvalho","doi":"10.1080/15476286.2024.2329451","DOIUrl":"10.1080/15476286.2024.2329451","url":null,"abstract":"<p><p>The accurate classification of non-coding RNA (ncRNA) sequences is pivotal for advanced non-coding genome annotation and analysis, a fundamental aspect of genomics that facilitates understanding of ncRNA functions and regulatory mechanisms in various biological processes. While traditional machine learning approaches have been employed for distinguishing ncRNA, these often necessitate extensive feature engineering. Recently, deep learning algorithms have provided advancements in ncRNA classification. This study presents BioDeepFuse, a hybrid deep learning framework integrating convolutional neural networks (CNN) or bidirectional long short-term memory (BiLSTM) networks with handcrafted features for enhanced accuracy. This framework employs a combination of <i>k-</i>mer one-hot, <i>k-</i>mer dictionary, and feature extraction techniques for input representation. Extracted features, when embedded into the deep network, enable optimal utilization of spatial and sequential nuances of ncRNA sequences. Using benchmark datasets and real-world RNA samples from bacterial organisms, we evaluated the performance of BioDeepFuse. Results exhibited high accuracy in ncRNA classification, underscoring the robustness of our tool in addressing complex ncRNA sequence data challenges. The effective melding of CNN or BiLSTM with external features heralds promising directions for future research, particularly in refining ncRNA classifiers and deepening insights into ncRNAs in cellular processes and disease manifestations. In addition to its original application in the context of bacterial organisms, the methodologies and techniques integrated into our framework can potentially render BioDeepFuse effective in various and broader domains.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"1-12"},"PeriodicalIF":4.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10968306/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140288892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNA BiologyPub Date : 2024-01-01Epub Date: 2024-03-26DOI: 10.1080/15476286.2024.2333123
Yuki Mochida, Satoshi Uchida
{"title":"mRNA vaccine designs for optimal adjuvanticity and delivery.","authors":"Yuki Mochida, Satoshi Uchida","doi":"10.1080/15476286.2024.2333123","DOIUrl":"10.1080/15476286.2024.2333123","url":null,"abstract":"<p><p>Adjuvanticity and delivery are crucial facets of mRNA vaccine design. In modern mRNA vaccines, adjuvant functions are integrated into mRNA vaccine nanoparticles, allowing the co-delivery of antigen mRNA and adjuvants in a unified, all-in-one formulation. In this formulation, many mRNA vaccines utilize the immunostimulating properties of mRNA and vaccine carrier components, including lipids and polymers, as adjuvants. However, careful design is necessary, as excessive adjuvanticity and activation of improper innate immune signalling can conversely hinder vaccination efficacy and trigger adverse effects. mRNA vaccines also require delivery systems to achieve antigen expression in antigen-presenting cells (APCs) within lymphoid organs. Some vaccines directly target APCs in the lymphoid organs, while others rely on APCs migration to the draining lymph nodes after taking up mRNA vaccines. This review explores the current mechanistic understanding of these processes and the ongoing efforts to improve vaccine safety and efficacy based on this understanding.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"1-27"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10968337/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140288893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}