The oncogenic microRNA miR-222 promotes human LINE-1 retrotransposition.

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA Biology Pub Date : 2025-12-01 Epub Date: 2025-06-03 DOI:10.1080/15476286.2025.2511318
Tomer Friehmann, Yamama Abu Mohsen, Yehuda Schlesinger, Lucy Ghantous, Lika Gamaev, Chavah Landau Zenilman, Avi Harazi, Eithan Galun, Daniel S Goldenberg
{"title":"The oncogenic microRNA miR-222 promotes human LINE-1 retrotransposition.","authors":"Tomer Friehmann, Yamama Abu Mohsen, Yehuda Schlesinger, Lucy Ghantous, Lika Gamaev, Chavah Landau Zenilman, Avi Harazi, Eithan Galun, Daniel S Goldenberg","doi":"10.1080/15476286.2025.2511318","DOIUrl":null,"url":null,"abstract":"<p><p>The Long Interspersed Element-1 (LINE-1) contributes significantly to carcinogenesis and to tumour heterogeneity in many cancer types, including hepatocellular carcinoma (HCC), by its autonomous retrotransposition (RTP) and by its ability to retrotranspose some non-autonomous transposable elements. Previously, multiple proteins and a few microRNAs (miRs) were described as regulators of LINE-1 RTP. Here, we demonstrate that miR-222, which is oncogenic in HCC, promotes LINE-1 RTP in human HCC and some other cell lines <i>in vitro</i>, and that both miR-222-3p and miR-222-5p activate LINE-1 RTP in a cell-type specific manner. We generated miR-222-knockout mutants of the Huh7 and FLC4 hCC cell lines, and performed RNA-seq analysis of Huh7/miR-222-knockout cells and global proteomics analysis of both Huh7 and FLC4 miR-222-knockout mutants. We demonstrate that miR-222 decreases let-7c expression in both Huh7 and FLC4 cells, and that this decrease contributes to promotion of LINE-1 RTP by miR-222 in Huh7 cells.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":" ","pages":"1-15"},"PeriodicalIF":3.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15476286.2025.2511318","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Long Interspersed Element-1 (LINE-1) contributes significantly to carcinogenesis and to tumour heterogeneity in many cancer types, including hepatocellular carcinoma (HCC), by its autonomous retrotransposition (RTP) and by its ability to retrotranspose some non-autonomous transposable elements. Previously, multiple proteins and a few microRNAs (miRs) were described as regulators of LINE-1 RTP. Here, we demonstrate that miR-222, which is oncogenic in HCC, promotes LINE-1 RTP in human HCC and some other cell lines in vitro, and that both miR-222-3p and miR-222-5p activate LINE-1 RTP in a cell-type specific manner. We generated miR-222-knockout mutants of the Huh7 and FLC4 hCC cell lines, and performed RNA-seq analysis of Huh7/miR-222-knockout cells and global proteomics analysis of both Huh7 and FLC4 miR-222-knockout mutants. We demonstrate that miR-222 decreases let-7c expression in both Huh7 and FLC4 cells, and that this decrease contributes to promotion of LINE-1 RTP by miR-222 in Huh7 cells.

致癌microRNA miR-222促进人类LINE-1逆转录转位。
长穿插元件-1 (LINE-1)通过其自主反转位(RTP)和对一些非自主转座元件的反转位能力,对包括肝细胞癌(HCC)在内的许多癌症类型的癌变和肿瘤异质性有重要贡献。以前,多种蛋白质和一些microrna (miRs)被描述为LINE-1 RTP的调节因子。在这里,我们证明了在HCC中具有致癌作用的miR-222在体外促进人类HCC和其他一些细胞系中的LINE-1 RTP,并且miR-222-3p和miR-222-5p都以细胞类型特异性的方式激活LINE-1 RTP。我们生成了Huh7和FLC4 HCC细胞系的mir -222敲除突变体,并对Huh7/ mir -222敲除细胞进行RNA-seq分析,并对Huh7和FLC4 mir -222敲除突变体进行全局蛋白质组学分析。我们证明miR-222降低了Huh7和FLC4细胞中let-7c的表达,并且这种降低有助于miR-222在Huh7细胞中促进LINE-1 RTP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
RNA Biology
RNA Biology 生物-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
82
审稿时长
1 months
期刊介绍: RNA has played a central role in all cellular processes since the beginning of life: decoding the genome, regulating gene expression, mediating molecular interactions, catalyzing chemical reactions. RNA Biology, as a leading journal in the field, provides a platform for presenting and discussing cutting-edge RNA research. RNA Biology brings together a multidisciplinary community of scientists working in the areas of: Transcription and splicing Post-transcriptional regulation of gene expression Non-coding RNAs RNA localization Translation and catalysis by RNA Structural biology Bioinformatics RNA in disease and therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信