{"title":"反义长链非编码RNA的隐藏力量:双链RNA形成介导的新调控层。","authors":"Jan-Philipp Lamping, Heike Krebber","doi":"10.1080/15476286.2025.2530797","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past decade, non-coding RNAs (ncRNAs) have gained prominence in research due to their widespread presence in cells, yet their functions remain increasingly complex and less understood. Despite being initially deemed 'junk', many lncRNAs are now recognized as key regulators in cells and are often affected in disease contexts. Notably, numerous mRNAs have annotated antisense RNAs (asRNAs). Because asRNAs resemble the largest group of lncRNAs and were identified to serve a general function in <i>Saccharomyces cerevisiae</i>, they are the focus of this review. In <i>S. cerevisiae</i>, the absence of RNA interference (RNAi) enables unbiased study and allowed researchers to investigate their roles in gene regulation more directly with intriguing results, summarized here. Expression of asRNA leads to the formation of double-stranded RNAs (dsRNAs) with the regarding sense counterpart, resulting in enhanced gene expression through preferential nuclear export. Thus, these hidden leaders can boost gene expression and require future attention pivotal for elucidating their influence on biological processes and revealing disease mechanisms.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":" ","pages":"1-16"},"PeriodicalIF":3.4000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12247107/pdf/","citationCount":"0","resultStr":"{\"title\":\"The hidden power of antisense long non-coding RNAs: a dive into a novel regulatory layer mediated by double-stranded RNA formation.\",\"authors\":\"Jan-Philipp Lamping, Heike Krebber\",\"doi\":\"10.1080/15476286.2025.2530797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past decade, non-coding RNAs (ncRNAs) have gained prominence in research due to their widespread presence in cells, yet their functions remain increasingly complex and less understood. Despite being initially deemed 'junk', many lncRNAs are now recognized as key regulators in cells and are often affected in disease contexts. Notably, numerous mRNAs have annotated antisense RNAs (asRNAs). Because asRNAs resemble the largest group of lncRNAs and were identified to serve a general function in <i>Saccharomyces cerevisiae</i>, they are the focus of this review. In <i>S. cerevisiae</i>, the absence of RNA interference (RNAi) enables unbiased study and allowed researchers to investigate their roles in gene regulation more directly with intriguing results, summarized here. Expression of asRNA leads to the formation of double-stranded RNAs (dsRNAs) with the regarding sense counterpart, resulting in enhanced gene expression through preferential nuclear export. Thus, these hidden leaders can boost gene expression and require future attention pivotal for elucidating their influence on biological processes and revealing disease mechanisms.</p>\",\"PeriodicalId\":21351,\"journal\":{\"name\":\"RNA Biology\",\"volume\":\" \",\"pages\":\"1-16\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12247107/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RNA Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15476286.2025.2530797\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15476286.2025.2530797","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The hidden power of antisense long non-coding RNAs: a dive into a novel regulatory layer mediated by double-stranded RNA formation.
Over the past decade, non-coding RNAs (ncRNAs) have gained prominence in research due to their widespread presence in cells, yet their functions remain increasingly complex and less understood. Despite being initially deemed 'junk', many lncRNAs are now recognized as key regulators in cells and are often affected in disease contexts. Notably, numerous mRNAs have annotated antisense RNAs (asRNAs). Because asRNAs resemble the largest group of lncRNAs and were identified to serve a general function in Saccharomyces cerevisiae, they are the focus of this review. In S. cerevisiae, the absence of RNA interference (RNAi) enables unbiased study and allowed researchers to investigate their roles in gene regulation more directly with intriguing results, summarized here. Expression of asRNA leads to the formation of double-stranded RNAs (dsRNAs) with the regarding sense counterpart, resulting in enhanced gene expression through preferential nuclear export. Thus, these hidden leaders can boost gene expression and require future attention pivotal for elucidating their influence on biological processes and revealing disease mechanisms.
期刊介绍:
RNA has played a central role in all cellular processes since the beginning of life: decoding the genome, regulating gene expression, mediating molecular interactions, catalyzing chemical reactions. RNA Biology, as a leading journal in the field, provides a platform for presenting and discussing cutting-edge RNA research.
RNA Biology brings together a multidisciplinary community of scientists working in the areas of:
Transcription and splicing
Post-transcriptional regulation of gene expression
Non-coding RNAs
RNA localization
Translation and catalysis by RNA
Structural biology
Bioinformatics
RNA in disease and therapy